Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

3x+7-x^{2}=1
Vähennä x^{2} molemmilta puolilta.
3x+7-x^{2}-1=0
Vähennä 1 molemmilta puolilta.
3x+6-x^{2}=0
Vähennä 1 luvusta 7 saadaksesi tuloksen 6.
-x^{2}+3x+6=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla -1, b luvulla 3 ja c luvulla 6 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 6}}{2\left(-1\right)}
Korota 3 neliöön.
x=\frac{-3±\sqrt{9+4\times 6}}{2\left(-1\right)}
Kerro -4 ja -1.
x=\frac{-3±\sqrt{9+24}}{2\left(-1\right)}
Kerro 4 ja 6.
x=\frac{-3±\sqrt{33}}{2\left(-1\right)}
Lisää 9 lukuun 24.
x=\frac{-3±\sqrt{33}}{-2}
Kerro 2 ja -1.
x=\frac{\sqrt{33}-3}{-2}
Ratkaise nyt yhtälö x=\frac{-3±\sqrt{33}}{-2}, kun ± on plusmerkkinen. Lisää -3 lukuun \sqrt{33}.
x=\frac{3-\sqrt{33}}{2}
Jaa -3+\sqrt{33} luvulla -2.
x=\frac{-\sqrt{33}-3}{-2}
Ratkaise nyt yhtälö x=\frac{-3±\sqrt{33}}{-2}, kun ± on miinusmerkkinen. Vähennä \sqrt{33} luvusta -3.
x=\frac{\sqrt{33}+3}{2}
Jaa -3-\sqrt{33} luvulla -2.
x=\frac{3-\sqrt{33}}{2} x=\frac{\sqrt{33}+3}{2}
Yhtälö on nyt ratkaistu.
3x+7-x^{2}=1
Vähennä x^{2} molemmilta puolilta.
3x-x^{2}=1-7
Vähennä 7 molemmilta puolilta.
3x-x^{2}=-6
Vähennä 7 luvusta 1 saadaksesi tuloksen -6.
-x^{2}+3x=-6
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
\frac{-x^{2}+3x}{-1}=-\frac{6}{-1}
Jaa molemmat puolet luvulla -1.
x^{2}+\frac{3}{-1}x=-\frac{6}{-1}
Jakaminen luvulla -1 kumoaa kertomisen luvulla -1.
x^{2}-3x=-\frac{6}{-1}
Jaa 3 luvulla -1.
x^{2}-3x=6
Jaa -6 luvulla -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=6+\left(-\frac{3}{2}\right)^{2}
Jaa -3 (x-termin kerroin) 2:lla, jolloin saadaan -\frac{3}{2}. Lisää sitten -\frac{3}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-3x+\frac{9}{4}=6+\frac{9}{4}
Korota -\frac{3}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}-3x+\frac{9}{4}=\frac{33}{4}
Lisää 6 lukuun \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{33}{4}
Jaa x^{2}-3x+\frac{9}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-\frac{3}{2}=\frac{\sqrt{33}}{2} x-\frac{3}{2}=-\frac{\sqrt{33}}{2}
Sievennä.
x=\frac{\sqrt{33}+3}{2} x=\frac{3-\sqrt{33}}{2}
Lisää \frac{3}{2} yhtälön kummallekin puolelle.