Ratkaise muuttujan x suhteen
x=\frac{\sqrt{1217}-35}{4}\approx -0,028618229
x=\frac{-\sqrt{1217}-35}{4}\approx -17,471381771
Kuvaaja
Jakaa
Kopioitu leikepöydälle
2x^{2}+35x=-1
Lisää 35x molemmille puolille.
2x^{2}+35x+1=0
Lisää 1 molemmille puolille.
x=\frac{-35±\sqrt{35^{2}-4\times 2}}{2\times 2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 2, b luvulla 35 ja c luvulla 1 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\times 2}}{2\times 2}
Korota 35 neliöön.
x=\frac{-35±\sqrt{1225-8}}{2\times 2}
Kerro -4 ja 2.
x=\frac{-35±\sqrt{1217}}{2\times 2}
Lisää 1225 lukuun -8.
x=\frac{-35±\sqrt{1217}}{4}
Kerro 2 ja 2.
x=\frac{\sqrt{1217}-35}{4}
Ratkaise nyt yhtälö x=\frac{-35±\sqrt{1217}}{4}, kun ± on plusmerkkinen. Lisää -35 lukuun \sqrt{1217}.
x=\frac{-\sqrt{1217}-35}{4}
Ratkaise nyt yhtälö x=\frac{-35±\sqrt{1217}}{4}, kun ± on miinusmerkkinen. Vähennä \sqrt{1217} luvusta -35.
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
Yhtälö on nyt ratkaistu.
2x^{2}+35x=-1
Lisää 35x molemmille puolille.
\frac{2x^{2}+35x}{2}=-\frac{1}{2}
Jaa molemmat puolet luvulla 2.
x^{2}+\frac{35}{2}x=-\frac{1}{2}
Jakaminen luvulla 2 kumoaa kertomisen luvulla 2.
x^{2}+\frac{35}{2}x+\left(\frac{35}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{35}{4}\right)^{2}
Jaa \frac{35}{2} (x-termin kerroin) 2:lla, jolloin saadaan \frac{35}{4}. Lisää sitten \frac{35}{4}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=-\frac{1}{2}+\frac{1225}{16}
Korota \frac{35}{4} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=\frac{1217}{16}
Lisää -\frac{1}{2} lukuun \frac{1225}{16} selvittämällä yhteinen nimittäjä ja laskemalla osoittajat yhteen. Supista sen jälkeen murtoluku pienimpään mahdolliseen nimittäjään.
\left(x+\frac{35}{4}\right)^{2}=\frac{1217}{16}
Jaa x^{2}+\frac{35}{2}x+\frac{1225}{16} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{35}{4}\right)^{2}}=\sqrt{\frac{1217}{16}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+\frac{35}{4}=\frac{\sqrt{1217}}{4} x+\frac{35}{4}=-\frac{\sqrt{1217}}{4}
Sievennä.
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
Vähennä \frac{35}{4} yhtälön molemmilta puolilta.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}