Hyppää pääsisältöön
Derivoi muuttujan x suhteen
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Jakaa

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sin(x)}{\cos(x)})
Käytä tangentin määritelmää.
\frac{\cos(x)\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))-\sin(x)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}
Kun tarkastellaan kahta derivoituvaa funktiota, funktioiden osamäärän derivaatta on nimittäjä kertaa osoittajan derivaatta miinus osoittaja kertaa nimittäjän derivaatta ja tämä kaikki jaettuna nimittäjän neliöllä.
\frac{\cos(x)\cos(x)-\sin(x)\left(-\sin(x)\right)}{\left(\cos(x)\right)^{2}}
sin(x):n derivaatta on cos(x), ja cos(x):n derivaatta on −sin(x).
\frac{\left(\cos(x)\right)^{2}+\left(\sin(x)\right)^{2}}{\left(\cos(x)\right)^{2}}
Sievennä.
\frac{1}{\left(\cos(x)\right)^{2}}
Käytä Pythagoraan identiteettiä.
\left(\sec(x)\right)^{2}
Käytä sekantin määritelmää.