Derivoi muuttujan h suhteen
\cos(h)
Laske
\sin(h)
Jakaa
Kopioitu leikepöydälle
\frac{\mathrm{d}}{\mathrm{d}h}(\sin(h))=\left(\lim_{t\to 0}\frac{\sin(h+t)-\sin(h)}{t}\right)
Funktion f\left(x\right) derivaatta on raja-arvo \frac{f\left(x+h\right)-f\left(x\right)}{h}, kun h lähestyy arvoa 0, jos kyseinen raja-arvo on olemassa.
\lim_{t\to 0}\frac{\sin(t+h)-\sin(h)}{t}
Käytä sinin summakaavaa.
\lim_{t\to 0}\frac{\sin(h)\left(\cos(t)-1\right)+\cos(h)\sin(t)}{t}
Jaa tekijöihin \sin(h):n suhteen.
\left(\lim_{t\to 0}\sin(h)\right)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\left(\lim_{t\to 0}\cos(h)\right)\left(\lim_{t\to 0}\frac{\sin(t)}{t}\right)
Kirjoita raja-arvo uudelleen.
\sin(h)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\cos(h)\left(\lim_{t\to 0}\frac{\sin(t)}{t}\right)
Käytä tietoa, että h on vakio, laskettaessa raja-arvoa, kun t lähestyy arvoa 0.
\sin(h)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\cos(h)
Raja-arvo \lim_{h\to 0}\frac{\sin(h)}{h} on 1.
\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)=\left(\lim_{t\to 0}\frac{\left(\cos(t)-1\right)\left(\cos(t)+1\right)}{t\left(\cos(t)+1\right)}\right)
Jos haluat määrittää raja-arvon \lim_{t\to 0}\frac{\cos(t)-1}{t}, kerro ensin osoittaja ja nimittäjä luvulla \cos(t)+1.
\lim_{t\to 0}\frac{\left(\cos(t)\right)^{2}-1}{t\left(\cos(t)+1\right)}
Kerro \cos(t)+1 ja \cos(t)-1.
\lim_{t\to 0}-\frac{\left(\sin(t)\right)^{2}}{t\left(\cos(t)+1\right)}
Käytä Pythagoraan identiteettiä.
\left(\lim_{t\to 0}-\frac{\sin(t)}{t}\right)\left(\lim_{t\to 0}\frac{\sin(t)}{\cos(t)+1}\right)
Kirjoita raja-arvo uudelleen.
-\left(\lim_{t\to 0}\frac{\sin(t)}{\cos(t)+1}\right)
Raja-arvo \lim_{h\to 0}\frac{\sin(h)}{h} on 1.
\left(\lim_{t\to 0}\frac{\sin(t)}{\cos(t)+1}\right)=0
Käytä tietoa, että \frac{\sin(t)}{\cos(t)+1} on jatkuva arvolla 0.
\cos(h)
Sijoita arvo 0 yhtälöön \sin(h)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\cos(h).
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}