Hyppää pääsisältöön
Laske
Tick mark Image
Jaa tekijöihin
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

det(\left(\begin{matrix}0&5&4\\5&6&-6\\-2&-3&2\end{matrix}\right))
Etsi matriisin determinantti käyttämällä diagonaalimenetelmää.
\left(\begin{matrix}0&5&4&0&5\\5&6&-6&5&6\\-2&-3&2&-2&-3\end{matrix}\right)
Laajenna alkuperäistä matriisia toistamalla kaksi ensimmäistä saraketta neljäntenä ja viidentenä sarakkeena.
5\left(-6\right)\left(-2\right)+4\times 5\left(-3\right)=0
Aloita vasemmasta yläkulmasta, kerro laskevia lävistäjiä pitkin ja laske tulot yhteen.
-2\times 6\times 4+2\times 5\times 5=2
Aloita vasemmasta alakulmasta, kerro nousevia lävistäjiä pitkin ja laske tulot yhteen.
-2
Vähennä nousevan lävistäjän tulojen summa laskevan lävistäjän tulojen summasta.
det(\left(\begin{matrix}0&5&4\\5&6&-6\\-2&-3&2\end{matrix}\right))
Etsi matriisin determinantti käyttämällä alideterminanttilaajennusta (eli kofaktorilaajennusta).
-5det(\left(\begin{matrix}5&-6\\-2&2\end{matrix}\right))+4det(\left(\begin{matrix}5&6\\-2&-3\end{matrix}\right))
Jos haluat laajentaa alideterminantilla, kerro ensimmäisen rivin jokainen alkio sen alideterminantilla (sen 2\times 2-matriisin determinantti, joka syntyy, kun poistetaan se rivi ja sarake, jossa alkio esiintyy). Kerro sitten alkion sijainnilla.
-5\left(5\times 2-\left(-2\left(-6\right)\right)\right)+4\left(5\left(-3\right)-\left(-2\times 6\right)\right)
2\times 2 matriisin \left(\begin{matrix}a&b\\c&d\end{matrix}\right) determinantti on ad-bc.
-5\left(-2\right)+4\left(-3\right)
Sievennä.
-2
Laske termit yhteen lopputuloksen saamiseksi.