Ratkaise muuttujan x suhteen
x=5
Kuvaaja
Jakaa
Kopioitu leikepöydälle
x^{2}-6x=-5
Muuttuja x ei voi olla yhtä suuri kuin 1, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla x-1, joka on lukujen x-1,1-x pienin yhteinen jaettava.
x^{2}-6x+5=0
Lisää 5 molemmille puolille.
a+b=-6 ab=5
Jos haluat ratkaista kaavan, kerroin x^{2}-6x+5 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=-5 b=-1
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x-5\right)\left(x-1\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=5 x=1
Voit etsiä kaava ratkaisuja, ratkaista x-5=0 ja x-1=0.
x=5
Muuttuja x ei voi olla yhtä suuri kuin 1.
x^{2}-6x=-5
Muuttuja x ei voi olla yhtä suuri kuin 1, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla x-1, joka on lukujen x-1,1-x pienin yhteinen jaettava.
x^{2}-6x+5=0
Lisää 5 molemmille puolille.
a+b=-6 ab=1\times 5=5
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+5. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=-5 b=-1
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x^{2}-5x\right)+\left(-x+5\right)
Kirjoita \left(x^{2}-5x\right)+\left(-x+5\right) uudelleen muodossa x^{2}-6x+5.
x\left(x-5\right)-\left(x-5\right)
Jaa x toisessa ryhmässä ensimmäisessä ja -1.
\left(x-5\right)\left(x-1\right)
Jaa yleinen termi x-5 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=5 x=1
Voit etsiä kaava ratkaisuja, ratkaista x-5=0 ja x-1=0.
x=5
Muuttuja x ei voi olla yhtä suuri kuin 1.
x^{2}-6x=-5
Muuttuja x ei voi olla yhtä suuri kuin 1, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla x-1, joka on lukujen x-1,1-x pienin yhteinen jaettava.
x^{2}-6x+5=0
Lisää 5 molemmille puolille.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -6 ja c luvulla 5 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 5}}{2}
Korota -6 neliöön.
x=\frac{-\left(-6\right)±\sqrt{36-20}}{2}
Kerro -4 ja 5.
x=\frac{-\left(-6\right)±\sqrt{16}}{2}
Lisää 36 lukuun -20.
x=\frac{-\left(-6\right)±4}{2}
Ota luvun 16 neliöjuuri.
x=\frac{6±4}{2}
Luvun -6 vastaluku on 6.
x=\frac{10}{2}
Ratkaise nyt yhtälö x=\frac{6±4}{2}, kun ± on plusmerkkinen. Lisää 6 lukuun 4.
x=5
Jaa 10 luvulla 2.
x=\frac{2}{2}
Ratkaise nyt yhtälö x=\frac{6±4}{2}, kun ± on miinusmerkkinen. Vähennä 4 luvusta 6.
x=1
Jaa 2 luvulla 2.
x=5 x=1
Yhtälö on nyt ratkaistu.
x=5
Muuttuja x ei voi olla yhtä suuri kuin 1.
x^{2}-6x=-5
Muuttuja x ei voi olla yhtä suuri kuin 1, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla x-1, joka on lukujen x-1,1-x pienin yhteinen jaettava.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
Jaa -6 (x-termin kerroin) 2:lla, jolloin saadaan -3. Lisää sitten -3:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-6x+9=-5+9
Korota -3 neliöön.
x^{2}-6x+9=4
Lisää -5 lukuun 9.
\left(x-3\right)^{2}=4
Jaa x^{2}-6x+9 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-3=2 x-3=-2
Sievennä.
x=5 x=1
Lisää 3 yhtälön kummallekin puolelle.
x=5
Muuttuja x ei voi olla yhtä suuri kuin 1.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}