Laske
\frac{\left(2x\ln(x)+\sin(2x)\right)\cos(x^{\tan(x)})x^{\tan(x)-1}}{2\left(\cos(x)\right)^{2}}
Derivoi muuttujan x suhteen
\frac{x^{\tan(x)-2}\left(-4\ln(x)\sin(2x)\sin(x^{\tan(x)})x^{\frac{\sin(x)+\cos(x)}{\cos(x)}}-4\ln(x)^{2}\sin(x^{\tan(x)})x^{\frac{\sin(x)+2\cos(x)}{\cos(x)}}-\left(\sin(2x)\right)^{2}x^{\tan(x)}\sin(x^{\tan(x)})+4\cos(x^{\tan(x)})\left(x\ln(x)\right)^{2}+4x^{2}\ln(x)\sin(2x)\cos(x^{\tan(x)})-4\sin(x)\left(\cos(x)\right)^{3}\cos(x^{\tan(x)})+\left(\sin(2x)\right)^{2}\cos(x^{\tan(x)})+4x\ln(x)\sin(2x)\cos(x^{\tan(x)})+8x\left(\cos(x)\right)^{2}\cos(x^{\tan(x)})\right)}{4\left(\cos(x)\right)^{4}}
Jakaa
Kopioitu leikepöydälle
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}