پرش به محتوای اصلی
عامل
Tick mark Image
ارزیابی
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

x^{2}-10x+25
چندجمله‌ای را برای قرار دادن در قالب استاندارد، دوباره مرتب کنید. جملات را از بیشترین به کمترین قرار دهید.
a+b=-10 ab=1\times 25=25
با گروه‌بندی عبارت، از آن فاکتور بگیرید. ابتدا، عبارت باید به‌صورت x^{2}+ax+bx+25 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,-25 -5,-5
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b منفی است، a و b هر دو منفی هستند. تمام جفت‌های صحیح را که حاصلشان 25 است فهرست کنید.
-1-25=-26 -5-5=-10
مجموع هر زوج را محاسبه کنید.
a=-5 b=-5
جواب زوجی است که مجموع آن -10 است.
\left(x^{2}-5x\right)+\left(-5x+25\right)
x^{2}-10x+25 را به‌عنوان \left(x^{2}-5x\right)+\left(-5x+25\right) بازنویسی کنید.
x\left(x-5\right)-5\left(x-5\right)
در گروه اول از x و در گروه دوم از -5 فاکتور بگیرید.
\left(x-5\right)\left(x-5\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-5 فاکتور بگیرید.
\left(x-5\right)^{2}
به عنوان یک مربع دو جمله‌ای بازنویسی کنید.
factor(x^{2}-10x+25)
این معادله سه جمله‌ای دارای یک شکل از مجذور سه جمله است که شاید در یک مضروب مشترک ضرب شده است. مجذورهای سه جمله‌ای را می‌توان با یافتن ریشه‌های دوم عبارت‌های اول و آخر، فاکتورگیری کرد.
\sqrt{25}=5
ریشه دوم جمله انتهایی 25 را پیدا کنید.
\left(x-5\right)^{2}
مجذور سه جمله‌ای برابر با مجذور دو جمله‌ای است که مجموع یا تفاضل ریشه‌های دوم عبارت‌های ابتدایی و انتهایی است و در آن علامت توسط علامت عبارت میانی مجذور سه جمله‌ای تعیین می‌شود.
x^{2}-10x+25=0
چند جمله‌ای درجه دوم را می‌توان با استفاده از تبدیل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور گرفت، به طوری که x_{1} و x_{2} راه حل معادله درجه دوم ax^{2}+bx+c=0 است.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
-10 را مجذور کنید.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
-4 بار 25.
x=\frac{-\left(-10\right)±\sqrt{0}}{2}
100 را به -100 اضافه کنید.
x=\frac{-\left(-10\right)±0}{2}
ریشه دوم 0 را به دست آورید.
x=\frac{10±0}{2}
متضاد -10 عبارت است از 10.
x^{2}-10x+25=\left(x-5\right)\left(x-5\right)
عبارت اصلی را با استفاده از ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور بگیرید. 5 را برای x_{1} و 5 را برای x_{2} جایگزین کنید.