عامل
2\left(t-2\right)\left(t+1\right)\left(t+3\right)t^{2}
ارزیابی
2\left(t-2\right)\left(t+1\right)\left(t+3\right)t^{2}
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
2\left(t^{5}+2t^{4}-5t^{3}-6t^{2}\right)
2 را فاکتور بگیرید.
t^{2}\left(t^{3}+2t^{2}-5t-6\right)
t^{5}+2t^{4}-5t^{3}-6t^{2} را در نظر بگیرید. t^{2} را فاکتور بگیرید.
\left(t+3\right)\left(t^{2}-t-2\right)
t^{3}+2t^{2}-5t-6 را در نظر بگیرید. بر اساس قضیه ریشه گویا، تمام ریشههای گویای یک چندجملهای به شکل \frac{p}{q} هستند، که در آن p به عبارت ثابت -6 و q به عامل پیشگام 1 تقسیم میشود. یکی از این ریشهها -3 است. با تقسیم این چندجملهای به t+3، از آن فاکتور بگیرید.
a+b=-1 ab=1\left(-2\right)=-2
t^{2}-t-2 را در نظر بگیرید. با گروهبندی عبارت، از آن فاکتور بگیرید. ابتدا، عبارت باید بهصورت t^{2}+at+bt-2 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
a=-2 b=1
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b منفی است، عدد منفی قدر مطلق بزرگتری نسبت به عدد مثبت دارد. تنها جواب دستگاه این زوج است.
\left(t^{2}-2t\right)+\left(t-2\right)
t^{2}-t-2 را بهعنوان \left(t^{2}-2t\right)+\left(t-2\right) بازنویسی کنید.
t\left(t-2\right)+t-2
از t در t^{2}-2t فاکتور بگیرید.
\left(t-2\right)\left(t+1\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک t-2 فاکتور بگیرید.
2t^{2}\left(t+3\right)\left(t-2\right)\left(t+1\right)
عبارت فاکتورگیریشده کامل را بازنویسی کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}