پرش به محتوای اصلی
ارزیابی
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\int x+\sqrt[3]{x}+\frac{1}{x^{2}}\mathrm{d}x
ابتدا انتگرال نامعین را محاسبه کنید.
\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x\mathrm{d}x را با \frac{x^{2}}{2}جایگزین کنید.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
\sqrt[3]{x} را به‌عنوان x^{\frac{1}{3}} بازنویسی کنید. چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{\frac{1}{3}}\mathrm{d}x را با \frac{x^{\frac{4}{3}}}{\frac{4}{3}}جایگزین کنید. ساده کنید.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int \frac{1}{x^{2}}\mathrm{d}x را با -\frac{1}{x}جایگزین کنید.
\frac{2^{2}}{2}+\frac{3}{4}\times 2^{\frac{4}{3}}-2^{-1}-\left(\frac{1^{2}}{2}+\frac{3}{4}\times 1^{\frac{4}{3}}-1^{-1}\right)
انتگرال معین برابر است با ضدمشتق عبارت محاسبه‌شده در حد بالای انتگرال‌گیری منهای ضدمشتق محاسبه‌شده در حد پایین انتگرال‌گیری.
\frac{5}{4}+\frac{3\sqrt[3]{2}}{2}
ساده کنید.