پرش به محتوای اصلی
ارزیابی
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{1}{2\sqrt{502}-\sqrt{200}}
2008=2^{2}\times 502 را فاکتور بگیرید. حاصلضرب جذر \sqrt{2^{2}\times 502} را به‌صورت حاصلضرب ریشه‌های دوم \sqrt{2^{2}}\sqrt{502} بازنویسی کنید. ریشه دوم 2^{2} را به دست آورید.
\frac{1}{2\sqrt{502}-10\sqrt{2}}
200=10^{2}\times 2 را فاکتور بگیرید. حاصلضرب جذر \sqrt{10^{2}\times 2} را به‌صورت حاصلضرب ریشه‌های دوم \sqrt{10^{2}}\sqrt{2} بازنویسی کنید. ریشه دوم 10^{2} را به دست آورید.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right)}
مخرج \frac{1}{2\sqrt{502}-10\sqrt{2}} را با ضرب صورت و مخرج به 2\sqrt{502}+10\sqrt{2} گویا کنید.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
\left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right) را در نظر بگیرید. عمل ضرب را می‌توان با استفاده از قاعده \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} به تفاضل مربع‌ها تغییر داد.
\frac{2\sqrt{502}+10\sqrt{2}}{2^{2}\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
\left(2\sqrt{502}\right)^{2} را بسط دهید.
\frac{2\sqrt{502}+10\sqrt{2}}{4\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
2 را به توان 2 محاسبه کنید و 4 را به دست آورید.
\frac{2\sqrt{502}+10\sqrt{2}}{4\times 502-\left(-10\sqrt{2}\right)^{2}}
مجذور \sqrt{502} عبارت است از 502.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\sqrt{2}\right)^{2}}
4 و 502 را برای دستیابی به 2008 ضرب کنید.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\right)^{2}\left(\sqrt{2}\right)^{2}}
\left(-10\sqrt{2}\right)^{2} را بسط دهید.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\left(\sqrt{2}\right)^{2}}
-10 را به توان 2 محاسبه کنید و 100 را به دست آورید.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\times 2}
مجذور \sqrt{2} عبارت است از 2.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-200}
100 و 2 را برای دستیابی به 200 ضرب کنید.
\frac{2\sqrt{502}+10\sqrt{2}}{1808}
تفریق 200 را از 2008 برای به دست آوردن 1808 تفریق کنید.