Faktorizatu
\left(y-5\right)\left(y-3\right)y^{2}
Ebaluatu
\left(y-5\right)\left(y-3\right)y^{2}
Grafikoa
Partekatu
Kopiatu portapapeletan
y^{2}\left(y^{2}-8y+15\right)
Deskonposatu y^{2}.
a+b=-8 ab=1\times 15=15
Kasurako: y^{2}-8y+15. Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena y^{2}+ay+by+15 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
-1,-15 -3,-5
ab positiboa denez, a eta b balioek zeinu bera dute. a+b negatiboa denez, a eta b negatiboak dira. Zerrendatu 15 biderkadura duten osokoen pare guztiak.
-1-15=-16 -3-5=-8
Kalkulatu pare bakoitzaren batura.
a=-5 b=-3
-8 batura duen parea da soluzioa.
\left(y^{2}-5y\right)+\left(-3y+15\right)
Berridatzi y^{2}-8y+15 honela: \left(y^{2}-5y\right)+\left(-3y+15\right).
y\left(y-5\right)-3\left(y-5\right)
Deskonposatu y lehen taldean, eta -3 bigarren taldean.
\left(y-5\right)\left(y-3\right)
Deskonposatu y-5 gai arrunta banaketa-propietatea erabiliz.
y^{2}\left(y-5\right)\left(y-3\right)
Berridatzi faktorizatutako adierazpen osoa.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}