Ebatzi: C
C=-\frac{dn\left(\sqrt{-\left(\sin(n)\right)^{2}+1}-1\right)}{2\sin(n)}
d\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }n=\pi n_{1}
Ebatzi: d
d=\frac{2C\left(\sqrt{-\left(\sin(n)\right)^{2}+1}+1\right)}{n\sin(n)}
\nexists n_{1}\in \mathrm{Z}\text{ : }n=\pi n_{1}\text{ and }C\neq 0
Partekatu
Kopiatu portapapeletan
\frac{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}{d\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}C=\frac{n}{2}
Modu arruntean dago ekuazioa.
\frac{\frac{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}{d\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}Cd\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}=\frac{n}{2\times \frac{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}{d\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}}
Zatitu ekuazioaren bi aldeak d^{-1}\left(\sqrt{1+\sin(n)}+\sqrt{1-\sin(n)}\right)\left(\sqrt{1+\sin(n)}-\sqrt{1-\sin(n)}\right)^{-1} balioarekin.
C=\frac{n}{2\times \frac{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}{d\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}}
d^{-1}\left(\sqrt{1+\sin(n)}+\sqrt{1-\sin(n)}\right)\left(\sqrt{1+\sin(n)}-\sqrt{1-\sin(n)}\right)^{-1} balioarekin zatituz gero, d^{-1}\left(\sqrt{1+\sin(n)}+\sqrt{1-\sin(n)}\right)\left(\sqrt{1+\sin(n)}-\sqrt{1-\sin(n)}\right)^{-1} balioarekiko biderketa desegiten da.
C=\frac{dn\left(-|\cos(n)|+1\right)}{2\sin(n)}
Zatitu \frac{n}{2} balioa d^{-1}\left(\sqrt{1+\sin(n)}+\sqrt{1-\sin(n)}\right)\left(\sqrt{1+\sin(n)}-\sqrt{1-\sin(n)}\right)^{-1} balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}