Faktorizatu
9c\left(c+4\right)
Ebaluatu
9c\left(c+4\right)
Partekatu
Kopiatu portapapeletan
9\left(c^{2}+4c\right)
Deskonposatu 9.
c\left(c+4\right)
Kasurako: c^{2}+4c. Deskonposatu c.
9c\left(c+4\right)
Berridatzi faktorizatutako adierazpen osoa.
9c^{2}+36c=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
c=\frac{-36±\sqrt{36^{2}}}{2\times 9}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
c=\frac{-36±36}{2\times 9}
Atera 36^{2} balioaren erro karratua.
c=\frac{-36±36}{18}
Egin 2 bider 9.
c=\frac{0}{18}
Orain, ebatzi c=\frac{-36±36}{18} ekuazioa ± plus denean. Gehitu -36 eta 36.
c=0
Zatitu 0 balioa 18 balioarekin.
c=-\frac{72}{18}
Orain, ebatzi c=\frac{-36±36}{18} ekuazioa ± minus denean. Egin 36 ken -36.
c=-4
Zatitu -72 balioa 18 balioarekin.
9c^{2}+36c=9c\left(c-\left(-4\right)\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu 0 x_{1} faktorean, eta -4 x_{2} faktorean.
9c^{2}+36c=9c\left(c+4\right)
Sinplifikatu p-\left(-q\right) motako adierazpen guztiak p+q gisa.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}