Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=-2 ab=-8
Ekuazioa ebazteko, faktorizatu x^{2}-2x-8 formula hau erabilita: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
1,-8 2,-4
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b negatiboa denez, zenbaki negatiboak positiboak baino balio absolutu handiagoa du. Zerrendatu -8 biderkadura duten osokoen pare guztiak.
1-8=-7 2-4=-2
Kalkulatu pare bakoitzaren batura.
a=-4 b=2
-2 batura duen parea da soluzioa.
\left(x-4\right)\left(x+2\right)
Berridatzi faktorizatutako adierazpena (\left(x+a\right)\left(x+b\right)) lortutako balioak erabilita.
x=4 x=-2
Ekuazioaren soluzioak aurkitzeko, ebatzi x-4=0 eta x+2=0.
a+b=-2 ab=1\left(-8\right)=-8
Ekuazioa ebazteko, faktorizatu ezkerraldea taldekatzearen bidez. Lehenik, x^{2}+ax+bx-8 gisa idatzi behar da ezkerraldea. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
1,-8 2,-4
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b negatiboa denez, zenbaki negatiboak positiboak baino balio absolutu handiagoa du. Zerrendatu -8 biderkadura duten osokoen pare guztiak.
1-8=-7 2-4=-2
Kalkulatu pare bakoitzaren batura.
a=-4 b=2
-2 batura duen parea da soluzioa.
\left(x^{2}-4x\right)+\left(2x-8\right)
Berridatzi x^{2}-2x-8 honela: \left(x^{2}-4x\right)+\left(2x-8\right).
x\left(x-4\right)+2\left(x-4\right)
Deskonposatu x lehen taldean, eta 2 bigarren taldean.
\left(x-4\right)\left(x+2\right)
Deskonposatu x-4 gai arrunta banaketa-propietatea erabiliz.
x=4 x=-2
Ekuazioaren soluzioak aurkitzeko, ebatzi x-4=0 eta x+2=0.
x^{2}-2x-8=0
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 1 balioa a balioarekin, -2 balioa b balioarekin, eta -8 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
Egin -2 ber bi.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
Egin -4 bider -8.
x=\frac{-\left(-2\right)±\sqrt{36}}{2}
Gehitu 4 eta 32.
x=\frac{-\left(-2\right)±6}{2}
Atera 36 balioaren erro karratua.
x=\frac{2±6}{2}
-2 zenbakiaren aurkakoa 2 da.
x=\frac{8}{2}
Orain, ebatzi x=\frac{2±6}{2} ekuazioa ± plus denean. Gehitu 2 eta 6.
x=4
Zatitu 8 balioa 2 balioarekin.
x=-\frac{4}{2}
Orain, ebatzi x=\frac{2±6}{2} ekuazioa ± minus denean. Egin 6 ken 2.
x=-2
Zatitu -4 balioa 2 balioarekin.
x=4 x=-2
Ebatzi da ekuazioa.
x^{2}-2x-8=0
Honelako ekuazio koadratikoak karratua osatuta ebazten dira. Hori egiteko, ekuazioak x^{2}+bx=c egitura izan behar du.
x^{2}-2x-8-\left(-8\right)=-\left(-8\right)
Gehitu 8 ekuazioaren bi aldeetan.
x^{2}-2x=-\left(-8\right)
-8 balioari bere burua kenduz gero, 0 da emaitza.
x^{2}-2x=8
Egin -8 ken 0.
x^{2}-2x+1=8+1
Zatitu -2 (x gaiaren koefizientea) 2 balioarekin, eta -1 lortuko duzu. Ondoren, gehitu -1 balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}-2x+1=9
Gehitu 8 eta 1.
\left(x-1\right)^{2}=9
Atera x^{2}-2x+1 balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x-1\right)^{2}}=\sqrt{9}
Atera ekuazioaren bi aldeen erro karratua.
x-1=3 x-1=-3
Sinplifikatu.
x=4 x=-2
Gehitu 1 ekuazioaren bi aldeetan.