Eduki nagusira salto egin
Ebatzi: x (complex solution)
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

5x^{2}-7x+3=0
Trukatu aldeak, aldagaiak ezkerraldean egon daitezen.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\times 3}}{2\times 5}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 5 balioa a balioarekin, -7 balioa b balioarekin, eta 3 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-\left(-7\right)±\sqrt{49-4\times 5\times 3}}{2\times 5}
Egin -7 ber bi.
x=\frac{-\left(-7\right)±\sqrt{49-20\times 3}}{2\times 5}
Egin -4 bider 5.
x=\frac{-\left(-7\right)±\sqrt{49-60}}{2\times 5}
Egin -20 bider 3.
x=\frac{-\left(-7\right)±\sqrt{-11}}{2\times 5}
Gehitu 49 eta -60.
x=\frac{-\left(-7\right)±\sqrt{11}i}{2\times 5}
Atera -11 balioaren erro karratua.
x=\frac{7±\sqrt{11}i}{2\times 5}
-7 zenbakiaren aurkakoa 7 da.
x=\frac{7±\sqrt{11}i}{10}
Egin 2 bider 5.
x=\frac{7+\sqrt{11}i}{10}
Orain, ebatzi x=\frac{7±\sqrt{11}i}{10} ekuazioa ± plus denean. Gehitu 7 eta i\sqrt{11}.
x=\frac{-\sqrt{11}i+7}{10}
Orain, ebatzi x=\frac{7±\sqrt{11}i}{10} ekuazioa ± minus denean. Egin i\sqrt{11} ken 7.
x=\frac{7+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+7}{10}
Ebatzi da ekuazioa.
5x^{2}-7x+3=0
Trukatu aldeak, aldagaiak ezkerraldean egon daitezen.
5x^{2}-7x=-3
Kendu 3 bi aldeetatik. Zero ken edozein zenbaki zenbaki horren negatiboa da.
\frac{5x^{2}-7x}{5}=-\frac{3}{5}
Zatitu ekuazioaren bi aldeak 5 balioarekin.
x^{2}-\frac{7}{5}x=-\frac{3}{5}
5 balioarekin zatituz gero, 5 balioarekiko biderketa desegiten da.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=-\frac{3}{5}+\left(-\frac{7}{10}\right)^{2}
Zatitu -\frac{7}{5} (x gaiaren koefizientea) 2 balioarekin, eta -\frac{7}{10} lortuko duzu. Ondoren, gehitu -\frac{7}{10} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}-\frac{7}{5}x+\frac{49}{100}=-\frac{3}{5}+\frac{49}{100}
Egin -\frac{7}{10} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
x^{2}-\frac{7}{5}x+\frac{49}{100}=-\frac{11}{100}
Gehitu -\frac{3}{5} eta \frac{49}{100} izendatzaile komun bat aurkituz eta zenbakitzaileak gehituz. Gero, ahal dela, sinplifikatu frakzioa, ahalik eta gai gutxien izan ditzan.
\left(x-\frac{7}{10}\right)^{2}=-\frac{11}{100}
Atera x^{2}-\frac{7}{5}x+\frac{49}{100} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{-\frac{11}{100}}
Atera ekuazioaren bi aldeen erro karratua.
x-\frac{7}{10}=\frac{\sqrt{11}i}{10} x-\frac{7}{10}=-\frac{\sqrt{11}i}{10}
Sinplifikatu.
x=\frac{7+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+7}{10}
Gehitu \frac{7}{10} ekuazioaren bi aldeetan.