Eduki nagusira salto egin
Ebatzi: l
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l=1
Modu arruntean dago ekuazioa.
\frac{\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
Zatitu ekuazioaren bi aldeak \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) balioarekin.
l=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
\left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) balioarekin zatituz gero, \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) balioarekiko biderketa desegiten da.