\lim \frac { m ^ { 2 } - m + 1 } { m ^ { 2 } + m + 1 } = 1
Ebatzi: l
l=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\neq 0\text{ and }m\neq \frac{-1+\sqrt{3}i}{2}\text{ and }m\neq \frac{-\sqrt{3}i-1}{2}
Partekatu
Kopiatu portapapeletan
\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l=1
Modu arruntean dago ekuazioa.
\frac{\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
Zatitu ekuazioaren bi aldeak \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) balioarekin.
l=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
\left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) balioarekin zatituz gero, \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) balioarekiko biderketa desegiten da.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}