Eduki nagusira salto egin
Ebatzi: x, y
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

x+2y=7,x-2y=-1
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
x+2y=7
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
x=-2y+7
Egin ken 2y ekuazioaren bi aldeetan.
-2y+7-2y=-1
Ordeztu -2y+7 balioa x balioarekin beste ekuazioan (x-2y=-1).
-4y+7=-1
Gehitu -2y eta -2y.
-4y=-8
Egin ken 7 ekuazioaren bi aldeetan.
y=2
Zatitu ekuazioaren bi aldeak -4 balioarekin.
x=-2\times 2+7
Ordeztu 2 y balioarekin x=-2y+7 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=-4+7
Egin -2 bider 2.
x=3
Gehitu 7 eta -4.
x=3,y=2
Ebatzi da sistema.
x+2y=7,x-2y=-1
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-1\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}7\\-1\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}1&2\\1&-2\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}7\\-1\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}7\\-1\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{2}{-2-2}\\-\frac{1}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}7\\-1\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}7\\-1\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 7+\frac{1}{2}\left(-1\right)\\\frac{1}{4}\times 7-\frac{1}{4}\left(-1\right)\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Egin ariketa aritmetikoa.
x=3,y=2
Atera x eta y matrize-elementuak.
x+2y=7,x-2y=-1
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
x-x+2y+2y=7+1
Egin x-2y=-1 ken x+2y=7 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
2y+2y=7+1
Gehitu x eta -x. Sinplifikatu egiten dira x eta -x. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
4y=7+1
Gehitu 2y eta 2y.
4y=8
Gehitu 7 eta 1.
y=2
Zatitu ekuazioaren bi aldeak 4 balioarekin.
x-2\times 2=-1
Ordeztu 2 y balioarekin x-2y=-1 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x-4=-1
Egin -2 bider 2.
x=3
Gehitu 4 ekuazioaren bi aldeetan.
x=3,y=2
Ebatzi da sistema.