\left( \begin{array} { r r r } { 1 } & { - 2 } & { 0 } \\ { 4 } & { - 2 } & { - 1 } \\ { - 3 } & { 1 } & { 2 } \end{array} \right)
Kalkulatu determinantea
7
Ebaluatu
\left(\begin{matrix}1&-2&0\\4&-2&-1\\-3&1&2\end{matrix}\right)
Partekatu
Kopiatu portapapeletan
det(\left(\begin{matrix}1&-2&0\\4&-2&-1\\-3&1&2\end{matrix}\right))
Aurkitu matrizearen determinantea diagonalen metodoaren bidez.
\left(\begin{matrix}1&-2&0&1&-2\\4&-2&-1&4&-2\\-3&1&2&-3&1\end{matrix}\right)
Hedatu jatorrizko matrizea lehenengo zutabeak laugarren eta bosgarren gisa errepikatuta.
-2\times 2-2\left(-1\right)\left(-3\right)=-10
Goialdean ezkerretara dagoen sarreratik hasita, biderkatu beherantz diagonalki, eta gehitu biderkadura guztiak.
-1+2\times 4\left(-2\right)=-17
Behealdean ezkerretara dagoen sarreratik hasita, biderkatu gorantz diagonalki, eta gehitu biderkadura guztiak.
-10-\left(-17\right)
Kendu goranzko diagonalaren biderkaduren batura beheranzko diagonalaren biderkaduren baturari.
7
Egin -17 ken -10.
det(\left(\begin{matrix}1&-2&0\\4&-2&-1\\-3&1&2\end{matrix}\right))
Aurkitu matrizearen determinantea minorrak hedatzeko metodoa erabilita (kofaktoreen hedapenaren metodo ere baderitzo).
det(\left(\begin{matrix}-2&-1\\1&2\end{matrix}\right))-\left(-2det(\left(\begin{matrix}4&-1\\-3&2\end{matrix}\right))\right)
Minorren arabera garatzeko, biderkatu lehenengo errenkadako elementu bakoitza bere minorrarekin (elementua duen errenkada eta zutabea ezabatuta sortzen den 2\times 2 matrizearen determinantea). Ondoren, biderkatu elementuaren posizio-ikurra.
-2\times 2-\left(-1\right)-\left(-2\left(4\times 2-\left(-3\left(-1\right)\right)\right)\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizerako, determinantea ad-bc da.
-3-\left(-2\times 5\right)
Sinplifikatu.
7
Azken emaitza lortzeko, gehitu gaiak.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}