Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Diferentziatu x balioarekiko
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}x^{2}}{x^{2}}+\frac{1}{x^{2}}}{x-\frac{1}{x}})
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. Egin x^{2} bider \frac{x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}x^{2}+1}{x^{2}}}{x-\frac{1}{x}})
\frac{x^{2}x^{2}}{x^{2}} eta \frac{1}{x^{2}} balioek izendatzaile bera dutenez, zenbakitzaileak batu behar dituzu zatikien batura kalkulatzeko.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{x-\frac{1}{x}})
Egin biderketak x^{2}x^{2}+1 zatikian.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{xx}{x}-\frac{1}{x}})
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. Egin x bider \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{xx-1}{x}})
\frac{xx}{x} eta \frac{1}{x} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{x^{2}-1}{x}})
Egin biderketak xx-1 zatikian.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{4}+1\right)x}{x^{2}\left(x^{2}-1\right)})
Zatitu \frac{x^{4}+1}{x^{2}} balioa \frac{x^{2}-1}{x} frakzioarekin, \frac{x^{4}+1}{x^{2}} balioa \frac{x^{2}-1}{x} frakzioaren frakzio erreziprokoarekin biderkatuz.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+1}{x\left(x^{2}-1\right)})
Sinplifikatu x zenbakitzailean eta izendatzailean.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+1}{x^{3}-x})
Erabili banaketa-propietatea x eta x^{2}-1 biderkatzeko.
\frac{\left(x^{3}-x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+1)-\left(x^{4}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-x^{1})}{\left(x^{3}-x^{1}\right)^{2}}
Bi funtzio diferentziagarri ditugunean, bi funtzioen zatiduraren deribatua da izendatzailea bider zenbakitzailearen deribatua ken zenbakitzailea bider izendatzailearen deribatua, dena izendatzailearen karratuarekin zatituta.
\frac{\left(x^{3}-x^{1}\right)\times 4x^{4-1}-\left(x^{4}+1\right)\left(3x^{3-1}-x^{1-1}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Polinomioaren deribatua haren deribatuen gaien batura da. Gai konstante guztien deribatua 0 da. ax^{n} ekuazioaren deribatua nax^{n-1} da.
\frac{\left(x^{3}-x^{1}\right)\times 4x^{3}-\left(x^{4}+1\right)\left(3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Sinplifikatu.
\frac{x^{3}\times 4x^{3}-x^{1}\times 4x^{3}-\left(x^{4}+1\right)\left(3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Egin x^{3}-x^{1} bider 4x^{3}.
\frac{x^{3}\times 4x^{3}-x^{1}\times 4x^{3}-\left(x^{4}\times 3x^{2}+x^{4}\left(-1\right)x^{0}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Egin x^{4}+1 bider 3x^{2}-x^{0}.
\frac{4x^{3+3}-4x^{1+3}-\left(3x^{4+2}-x^{4}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Berrekizun bereko berreturak biderkatzeko, gehitu haien berretzaileak.
\frac{4x^{6}-4x^{4}-\left(3x^{6}-x^{4}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Sinplifikatu.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Bateratu antzeko gaiak.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-x^{0}\right)}{\left(x^{3}-x\right)^{2}}
t gaiei dagokienez, t^{1}=t.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-1\right)}{\left(x^{3}-x\right)^{2}}
t gaiei dagokienez, t^{0}=1. Salbuespena: 0.