Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Zabaldu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

\frac{2x+1}{\left(x-1\right)^{2}}-\frac{2}{\left(x-1\right)\left(x+1\right)}-\frac{2x-1}{x^{2}+2x+1}
x^{2}-2x+1 faktorea. x^{2}-1 faktorea.
\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. \left(x-1\right)^{2} eta \left(x-1\right)\left(x+1\right) ekuazioen multiplo komun txikiena \left(x+1\right)\left(x-1\right)^{2} da. Egin \frac{2x+1}{\left(x-1\right)^{2}} bider \frac{x+1}{x+1}. Egin \frac{2}{\left(x-1\right)\left(x+1\right)} bider \frac{x-1}{x-1}.
\frac{\left(2x+1\right)\left(x+1\right)-2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}} eta \frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
\frac{2x^{2}+2x+x+1-2x+2}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Egin biderketak \left(2x+1\right)\left(x+1\right)-2\left(x-1\right) zatikian.
\frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Konbinatu hemengo antzeko gaiak: 2x^{2}+2x+x+1-2x+2.
\frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{\left(x+1\right)^{2}}
x^{2}+2x+1 faktorea.
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}}-\frac{\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. \left(x+1\right)\left(x-1\right)^{2} eta \left(x+1\right)^{2} ekuazioen multiplo komun txikiena \left(x-1\right)^{2}\left(x+1\right)^{2} da. Egin \frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}} bider \frac{x+1}{x+1}. Egin \frac{2x-1}{\left(x+1\right)^{2}} bider \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)-\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}} eta \frac{\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
\frac{2x^{3}+2x^{2}+x^{2}+x+3x+3-2x^{3}+4x^{2}-2x+x^{2}-2x+1}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Egin biderketak \left(2x^{2}+x+3\right)\left(x+1\right)-\left(2x-1\right)\left(x-1\right)^{2} zatikian.
\frac{8x^{2}+4}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Konbinatu hemengo antzeko gaiak: 2x^{3}+2x^{2}+x^{2}+x+3x+3-2x^{3}+4x^{2}-2x+x^{2}-2x+1.
\frac{8x^{2}+4}{x^{4}-2x^{2}+1}
Garatu \left(x-1\right)^{2}\left(x+1\right)^{2}.
\frac{2x+1}{\left(x-1\right)^{2}}-\frac{2}{\left(x-1\right)\left(x+1\right)}-\frac{2x-1}{x^{2}+2x+1}
x^{2}-2x+1 faktorea. x^{2}-1 faktorea.
\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. \left(x-1\right)^{2} eta \left(x-1\right)\left(x+1\right) ekuazioen multiplo komun txikiena \left(x+1\right)\left(x-1\right)^{2} da. Egin \frac{2x+1}{\left(x-1\right)^{2}} bider \frac{x+1}{x+1}. Egin \frac{2}{\left(x-1\right)\left(x+1\right)} bider \frac{x-1}{x-1}.
\frac{\left(2x+1\right)\left(x+1\right)-2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}} eta \frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
\frac{2x^{2}+2x+x+1-2x+2}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Egin biderketak \left(2x+1\right)\left(x+1\right)-2\left(x-1\right) zatikian.
\frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Konbinatu hemengo antzeko gaiak: 2x^{2}+2x+x+1-2x+2.
\frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{\left(x+1\right)^{2}}
x^{2}+2x+1 faktorea.
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}}-\frac{\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. \left(x+1\right)\left(x-1\right)^{2} eta \left(x+1\right)^{2} ekuazioen multiplo komun txikiena \left(x-1\right)^{2}\left(x+1\right)^{2} da. Egin \frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}} bider \frac{x+1}{x+1}. Egin \frac{2x-1}{\left(x+1\right)^{2}} bider \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)-\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}} eta \frac{\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
\frac{2x^{3}+2x^{2}+x^{2}+x+3x+3-2x^{3}+4x^{2}-2x+x^{2}-2x+1}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Egin biderketak \left(2x^{2}+x+3\right)\left(x+1\right)-\left(2x-1\right)\left(x-1\right)^{2} zatikian.
\frac{8x^{2}+4}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Konbinatu hemengo antzeko gaiak: 2x^{3}+2x^{2}+x^{2}+x+3x+3-2x^{3}+4x^{2}-2x+x^{2}-2x+1.
\frac{8x^{2}+4}{x^{4}-2x^{2}+1}
Garatu \left(x-1\right)^{2}\left(x+1\right)^{2}.