Ebaluatu
\frac{4\left(2x^{2}+1\right)}{\left(x^{2}-1\right)^{2}}
Zabaldu
\frac{4\left(2x^{2}+1\right)}{\left(x^{2}-1\right)^{2}}
Grafikoa
Partekatu
Kopiatu portapapeletan
\frac{2x+1}{\left(x-1\right)^{2}}-\frac{2}{\left(x-1\right)\left(x+1\right)}-\frac{2x-1}{x^{2}+2x+1}
x^{2}-2x+1 faktorea. x^{2}-1 faktorea.
\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. \left(x-1\right)^{2} eta \left(x-1\right)\left(x+1\right) ekuazioen multiplo komun txikiena \left(x+1\right)\left(x-1\right)^{2} da. Egin \frac{2x+1}{\left(x-1\right)^{2}} bider \frac{x+1}{x+1}. Egin \frac{2}{\left(x-1\right)\left(x+1\right)} bider \frac{x-1}{x-1}.
\frac{\left(2x+1\right)\left(x+1\right)-2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}} eta \frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
\frac{2x^{2}+2x+x+1-2x+2}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Egin biderketak \left(2x+1\right)\left(x+1\right)-2\left(x-1\right) zatikian.
\frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Konbinatu hemengo antzeko gaiak: 2x^{2}+2x+x+1-2x+2.
\frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{\left(x+1\right)^{2}}
x^{2}+2x+1 faktorea.
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}}-\frac{\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. \left(x+1\right)\left(x-1\right)^{2} eta \left(x+1\right)^{2} ekuazioen multiplo komun txikiena \left(x-1\right)^{2}\left(x+1\right)^{2} da. Egin \frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}} bider \frac{x+1}{x+1}. Egin \frac{2x-1}{\left(x+1\right)^{2}} bider \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)-\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}} eta \frac{\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
\frac{2x^{3}+2x^{2}+x^{2}+x+3x+3-2x^{3}+4x^{2}-2x+x^{2}-2x+1}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Egin biderketak \left(2x^{2}+x+3\right)\left(x+1\right)-\left(2x-1\right)\left(x-1\right)^{2} zatikian.
\frac{8x^{2}+4}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Konbinatu hemengo antzeko gaiak: 2x^{3}+2x^{2}+x^{2}+x+3x+3-2x^{3}+4x^{2}-2x+x^{2}-2x+1.
\frac{8x^{2}+4}{x^{4}-2x^{2}+1}
Garatu \left(x-1\right)^{2}\left(x+1\right)^{2}.
\frac{2x+1}{\left(x-1\right)^{2}}-\frac{2}{\left(x-1\right)\left(x+1\right)}-\frac{2x-1}{x^{2}+2x+1}
x^{2}-2x+1 faktorea. x^{2}-1 faktorea.
\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. \left(x-1\right)^{2} eta \left(x-1\right)\left(x+1\right) ekuazioen multiplo komun txikiena \left(x+1\right)\left(x-1\right)^{2} da. Egin \frac{2x+1}{\left(x-1\right)^{2}} bider \frac{x+1}{x+1}. Egin \frac{2}{\left(x-1\right)\left(x+1\right)} bider \frac{x-1}{x-1}.
\frac{\left(2x+1\right)\left(x+1\right)-2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}} eta \frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
\frac{2x^{2}+2x+x+1-2x+2}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Egin biderketak \left(2x+1\right)\left(x+1\right)-2\left(x-1\right) zatikian.
\frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{x^{2}+2x+1}
Konbinatu hemengo antzeko gaiak: 2x^{2}+2x+x+1-2x+2.
\frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}}-\frac{2x-1}{\left(x+1\right)^{2}}
x^{2}+2x+1 faktorea.
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}}-\frac{\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. \left(x+1\right)\left(x-1\right)^{2} eta \left(x+1\right)^{2} ekuazioen multiplo komun txikiena \left(x-1\right)^{2}\left(x+1\right)^{2} da. Egin \frac{2x^{2}+x+3}{\left(x+1\right)\left(x-1\right)^{2}} bider \frac{x+1}{x+1}. Egin \frac{2x-1}{\left(x+1\right)^{2}} bider \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)-\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
\frac{\left(2x^{2}+x+3\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}} eta \frac{\left(2x-1\right)\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
\frac{2x^{3}+2x^{2}+x^{2}+x+3x+3-2x^{3}+4x^{2}-2x+x^{2}-2x+1}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Egin biderketak \left(2x^{2}+x+3\right)\left(x+1\right)-\left(2x-1\right)\left(x-1\right)^{2} zatikian.
\frac{8x^{2}+4}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Konbinatu hemengo antzeko gaiak: 2x^{3}+2x^{2}+x^{2}+x+3x+3-2x^{3}+4x^{2}-2x+x^{2}-2x+1.
\frac{8x^{2}+4}{x^{4}-2x^{2}+1}
Garatu \left(x-1\right)^{2}\left(x+1\right)^{2}.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}