Lahenda väärtuse x leidmiseks
x\in \begin{bmatrix}-\frac{\sqrt{5}}{5},\frac{\sqrt{5}}{5}\end{bmatrix}
Graafik
Jagama
Lõikelauale kopeeritud
x^{2}\leq \frac{1}{5}
Jagage mõlemad pooled 5-ga. Kuna 5 on positiivne, siis võrratus on sama suund.
x^{2}\leq \left(\frac{\sqrt{5}}{5}\right)^{2}
Arvutage \frac{1}{5} ruutjuur, et saada \frac{\sqrt{5}}{5}. Kirjutage\frac{1}{5} ümber kujul \left(\frac{\sqrt{5}}{5}\right)^{2}.
|x|\leq \frac{\sqrt{5}}{5}
Võrratus kehtib, kui |x|\leq \frac{\sqrt{5}}{5}.
x\in \begin{bmatrix}-\frac{\sqrt{5}}{5},\frac{\sqrt{5}}{5}\end{bmatrix}
Kirjutage|x|\leq \frac{\sqrt{5}}{5} ümber kujul x\in \left[-\frac{\sqrt{5}}{5},\frac{\sqrt{5}}{5}\right].
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}