Liigu edasi põhisisu juurde
Lahendage ja leidke x
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

\left(x-6\right)\left(x+6\right)=0
Mõelge valemile x^{2}-36. Kirjutagex^{2}-36 ümber kujul x^{2}-6^{2}. Ruutude vahe saab tegurdada reegli abil: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=6 x=-6
Võrrandi lahenduste leidmiseks Lahendage x-6=0 ja x+6=0.
x^{2}=36
Liitke 36 mõlemale poolele. Nulli liitmisel mis tahes väärtusele on tulemuseks sama väärtus.
x=6 x=-6
Leidke võrrandi mõlema poole ruutjuur.
x^{2}-36=0
Sellised ruutvõrrandid nagu see siin, kus on liige x^{2}, kuid puudub liige x, saab lahendada ruutvõrrandi valemiga \frac{-b±\sqrt{b^{2}-4ac}}{2a}, kui ruutvõrrand on viidud standardkujule: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 1, b väärtusega 0 ja c väärtusega -36.
x=\frac{0±\sqrt{-4\left(-36\right)}}{2}
Tõstke 0 ruutu.
x=\frac{0±\sqrt{144}}{2}
Korrutage omavahel -4 ja -36.
x=\frac{0±12}{2}
Leidke 144 ruutjuur.
x=6
Nüüd lahendage võrrand x=\frac{0±12}{2}, kui ± on pluss. Jagage 12 väärtusega 2.
x=-6
Nüüd lahendage võrrand x=\frac{0±12}{2}, kui ± on miinus. Jagage -12 väärtusega 2.
x=6 x=-6
Võrrand on nüüd lahendatud.