Liigu edasi põhisisu juurde
Arvuta
Tick mark Image
Lahuta teguriteks
Tick mark Image

Sarnased probleemid veebiotsingust

Jagama

2\sqrt{2}-2\sqrt{25}-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tegurda 8=2^{2}\times 2. Kirjutage \sqrt{2^{2}\times 2} toote juured, kui see ruut \sqrt{2^{2}}\sqrt{2}. Leidke 2^{2} ruutjuur.
2\sqrt{2}-2\times 5-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Arvutage 25 ruutjuur, et saada 5.
2\sqrt{2}-10-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Korrutage -2 ja 5, et leida -10.
2\sqrt{2}-10-\left(\sqrt{\frac{8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Korrutage 1 ja 8, et leida 8.
2\sqrt{2}-10-\left(\sqrt{\frac{9}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Liitke 8 ja 1, et leida 9.
2\sqrt{2}-10-\left(\frac{\sqrt{9}}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Kirjutage: allüksus \sqrt{\frac{9}{8}}: allüksus juured \frac{\sqrt{9}}{\sqrt{8}}.
2\sqrt{2}-10-\left(\frac{3}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Arvutage 9 ruutjuur, et saada 3.
2\sqrt{2}-10-\left(\frac{3}{2\sqrt{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tegurda 8=2^{2}\times 2. Kirjutage \sqrt{2^{2}\times 2} toote juured, kui see ruut \sqrt{2^{2}}\sqrt{2}. Leidke 2^{2} ruutjuur.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Ratsionaliseerige korrutades lugeja ja \sqrt{2} nimetaja \frac{3}{2\sqrt{2}} nimetaja.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{2\times 2}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
\sqrt{2} ruut on 2.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{4}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Korrutage 2 ja 2, et leida 4.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{4}+5\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
Tegurda 50=5^{2}\times 2. Kirjutage \sqrt{5^{2}\times 2} toote juured, kui see ruut \sqrt{5^{2}}\sqrt{2}. Leidke 5^{2} ruutjuur.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
Kombineerige \frac{3\sqrt{2}}{4} ja 5\sqrt{2}, et leida \frac{23}{4}\sqrt{2}.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\times 2\sqrt{3}\right)
Tegurda 12=2^{2}\times 3. Kirjutage \sqrt{2^{2}\times 3} toote juured, kui see ruut \sqrt{2^{2}}\sqrt{3}. Leidke 2^{2} ruutjuur.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2\times 2}{3}\sqrt{3}\right)
Avaldage \frac{2}{3}\times 2 ühe murdarvuna.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3}\right)
Korrutage 2 ja 2, et leida 4.
2\sqrt{2}-10-\frac{23}{4}\sqrt{2}-\frac{4}{3}\sqrt{3}
Avaldise "\frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3}" vastandi leidmiseks tuleb leida iga liikme vastand.
-\frac{15}{4}\sqrt{2}-10-\frac{4}{3}\sqrt{3}
Kombineerige 2\sqrt{2} ja -\frac{23}{4}\sqrt{2}, et leida -\frac{15}{4}\sqrt{2}.