Liigu edasi põhisisu juurde
Lahendage ja leidke I (complex solution)
Tick mark Image
Lahendage ja leidke I
Tick mark Image
Lahendage ja leidke R (complex solution)
Tick mark Image

Sarnased probleemid veebiotsingust

Jagama

IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Korrutage võrrandi mõlemad pooled \left(r+1\right)^{2}-ga.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Korrutage R ja R, et leida R^{2}.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Kasutage kaksliikme \left(r+1\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Kasutage distributiivsusomadust, et korrutada IR^{2} ja r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Kasutage kaksliikme \left(r+1\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Kasutage distributiivsusomadust, et korrutada r^{2}+2r+1 ja -18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Lahutage 18000 väärtusest 22000, et leida 4000.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Kombineerige kõik liikmed, mis sisaldavad I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Võrrand on standardkujul.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Jagage mõlemad pooled R^{2}r^{2}+2rR^{2}+R^{2}-ga.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
R^{2}r^{2}+2rR^{2}+R^{2}-ga jagamine võtab R^{2}r^{2}+2rR^{2}+R^{2}-ga korrutamise tagasi.
I=\frac{2000\left(2-18r-9r^{2}\right)}{R^{2}\left(r+1\right)^{2}}
Jagage 4000-36000r-18000r^{2} väärtusega R^{2}r^{2}+2rR^{2}+R^{2}.
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Korrutage võrrandi mõlemad pooled \left(r+1\right)^{2}-ga.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Korrutage R ja R, et leida R^{2}.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Kasutage kaksliikme \left(r+1\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Kasutage distributiivsusomadust, et korrutada IR^{2} ja r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Kasutage kaksliikme \left(r+1\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Kasutage distributiivsusomadust, et korrutada r^{2}+2r+1 ja -18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Lahutage 18000 väärtusest 22000, et leida 4000.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Kombineerige kõik liikmed, mis sisaldavad I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Võrrand on standardkujul.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Jagage mõlemad pooled R^{2}r^{2}+2rR^{2}+R^{2}-ga.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
R^{2}r^{2}+2rR^{2}+R^{2}-ga jagamine võtab R^{2}r^{2}+2rR^{2}+R^{2}-ga korrutamise tagasi.
I=\frac{2000\left(2-18r-9r^{2}\right)}{\left(R\left(r+1\right)\right)^{2}}
Jagage 4000-18000r^{2}-36000r väärtusega R^{2}r^{2}+2rR^{2}+R^{2}.