Liigu edasi põhisisu juurde
Arvuta
Tick mark Image

Sarnased probleemid veebiotsingust

Jagama

\int _{122}^{328}\left(2-\left(x^{2}-4x+4\right)\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Kasutage kaksliikme \left(x-2\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\int _{122}^{328}\left(2-x^{2}+4x-4\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Avaldise "x^{2}-4x+4" vastandi leidmiseks tuleb leida iga liikme vastand.
\int _{122}^{328}\left(-2-x^{2}+4x\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Lahutage 4 väärtusest 2, et leida -2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\times 5\right)^{2}\mathrm{d}x
Tõstke -2-x^{2}+4x ruutu.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\right)^{2}\mathrm{d}x
Korrutage 0 ja 5, et leida 0.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-2^{2}\mathrm{d}x
Lahutage 0 väärtusest 2, et leida 2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-4\mathrm{d}x
Arvutage 2 aste 2 ja leidke 4.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Lahutage 4 väärtusest 4, et leida 0.
\int x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Arvutage kõigepealt määramata integraal.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -16x\mathrm{d}x
Integreerige summa liikmete kaupa.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Tooge iga liikme konstant sulgude ette.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, asendage \int x^{4}\mathrm{d}x \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, asendage \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Korrutage omavahel -8 ja \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-16\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, asendage \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Korrutage omavahel 20 ja \frac{x^{3}}{3}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-8x^{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, asendage \int x\mathrm{d}x \frac{x^{2}}{2}. Korrutage omavahel -16 ja \frac{x^{2}}{2}.
\frac{328^{5}}{5}-2\times 328^{4}+\frac{20}{3}\times 328^{3}-8\times 328^{2}-\left(\frac{122^{5}}{5}-2\times 122^{4}+\frac{20}{3}\times 122^{3}-8\times 122^{2}\right)
Määratud integraali leidmiseks lahutatakse integreerimise ülemisel piirväärtusel arvutatud avaldise algfunktsioonist integreerimise alumisel piirväärtusel arvutatud algfunktsioon.
\frac{10970799276608}{15}
Lihtsustage.