Arvuta
\sqrt{6}+3\approx 5,449489743
Jagama
Lõikelauale kopeeritud
\frac{3\sqrt{2}-\sqrt{12}}{\sqrt{50}-\sqrt{48}}
Tegurda 18=3^{2}\times 2. Kirjutage \sqrt{3^{2}\times 2} toote juured, kui see ruut \sqrt{3^{2}}\sqrt{2}. Leidke 3^{2} ruutjuur.
\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{50}-\sqrt{48}}
Tegurda 12=2^{2}\times 3. Kirjutage \sqrt{2^{2}\times 3} toote juured, kui see ruut \sqrt{2^{2}}\sqrt{3}. Leidke 2^{2} ruutjuur.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-\sqrt{48}}
Tegurda 50=5^{2}\times 2. Kirjutage \sqrt{5^{2}\times 2} toote juured, kui see ruut \sqrt{5^{2}}\sqrt{2}. Leidke 5^{2} ruutjuur.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}}
Tegurda 48=4^{2}\times 3. Kirjutage \sqrt{4^{2}\times 3} toote juured, kui see ruut \sqrt{4^{2}}\sqrt{3}. Leidke 4^{2} ruutjuur.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}
Ratsionaliseerige korrutades lugeja ja 5\sqrt{2}+4\sqrt{3} nimetaja \frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}} nimetaja.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Mõelge valemile \left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{5^{2}\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Laiendage \left(5\sqrt{2}\right)^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Arvutage 2 aste 5 ja leidke 25.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\times 2-\left(-4\sqrt{3}\right)^{2}}
\sqrt{2} ruut on 2.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\sqrt{3}\right)^{2}}
Korrutage 25 ja 2, et leida 50.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
Laiendage \left(-4\sqrt{3}\right)^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\left(\sqrt{3}\right)^{2}}
Arvutage 2 aste -4 ja leidke 16.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\times 3}
\sqrt{3} ruut on 3.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-48}
Korrutage 16 ja 3, et leida 48.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{2}
Lahutage 48 väärtusest 50, et leida 2.
\frac{15\left(\sqrt{2}\right)^{2}+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Rakendage distributiivsusomadus, korrutades avaldise 3\sqrt{2}-2\sqrt{3} iga liikme avaldise 5\sqrt{2}+4\sqrt{3} iga liikmega.
\frac{15\times 2+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{2} ruut on 2.
\frac{30+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Korrutage 15 ja 2, et leida 30.
\frac{30+12\sqrt{6}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{3} ja \sqrt{2} korrutage numbrid, mis on sama juur.
\frac{30+12\sqrt{6}-10\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{3} ja \sqrt{2} korrutage numbrid, mis on sama juur.
\frac{30+2\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
Kombineerige 12\sqrt{6} ja -10\sqrt{6}, et leida 2\sqrt{6}.
\frac{30+2\sqrt{6}-8\times 3}{2}
\sqrt{3} ruut on 3.
\frac{30+2\sqrt{6}-24}{2}
Korrutage -8 ja 3, et leida -24.
\frac{6+2\sqrt{6}}{2}
Lahutage 24 väärtusest 30, et leida 6.
3+\sqrt{6}
Jagage 6+2\sqrt{6} iga liige 2-ga, et saada 3+\sqrt{6}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}