Lahendage ja leidke y (complex solution)
y=-\frac{10x^{2}}{-3x^{2}+10x-20}
x\neq 0\text{ and }x\neq \frac{5+\sqrt{35}i}{3}\text{ and }x\neq \frac{-\sqrt{35}i+5}{3}
Lahendage ja leidke y
y=-\frac{10x^{2}}{-3x^{2}+10x-20}
x\neq 0
Lahendage ja leidke x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{5}\left(\sqrt{y\left(40-7y\right)}+\sqrt{5}y\right)}{3y-10}\text{; }x=\frac{\sqrt{5}\left(-\sqrt{y\left(40-7y\right)}+\sqrt{5}y\right)}{3y-10}\text{, }&y\neq \frac{10}{3}\text{ and }y\neq 0\\x=2\text{, }&y=\frac{10}{3}\end{matrix}\right,
Lahendage ja leidke x
\left\{\begin{matrix}x=\frac{\sqrt{5y}\left(\sqrt{40-7y}+\sqrt{5y}\right)}{3y-10}\text{; }x=\frac{\sqrt{5y}\left(-\sqrt{40-7y}+\sqrt{5y}\right)}{3y-10}\text{, }&y\neq \frac{10}{3}\text{ and }y\leq \frac{40}{7}\text{ and }y>0\\x=2\text{, }&y=\frac{10}{3}\end{matrix}\right,
Graafik
Jagama
Lõikelauale kopeeritud
xy\times 3x+5y\times 4-5x\times 2x=10xy
Muutuja y ei tohi võrduda väärtusega 0, kuna nulliga jagamist pole määratletud. Korrutage võrrandi mõlemad pooled arvuga 5xy, mis on arvu 5,x,y vähim ühiskordne.
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
Korrutage x ja x, et leida x^{2}.
x^{2}y\times 3+20y-5x\times 2x=10xy
Korrutage 5 ja 4, et leida 20.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
Korrutage x ja x, et leida x^{2}.
x^{2}y\times 3+20y-10x^{2}=10xy
Korrutage 5 ja 2, et leida 10.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Lahutage mõlemast poolest 10xy.
x^{2}y\times 3+20y-10xy=10x^{2}
Liitke 10x^{2} mõlemale poolele. Nulli liitmisel mis tahes väärtusele on tulemuseks sama väärtus.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
Kombineerige kõik liikmed, mis sisaldavad y.
\left(3x^{2}-10x+20\right)y=10x^{2}
Võrrand on standardkujul.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Jagage mõlemad pooled 3x^{2}-10x+20-ga.
y=\frac{10x^{2}}{3x^{2}-10x+20}
3x^{2}-10x+20-ga jagamine võtab 3x^{2}-10x+20-ga korrutamise tagasi.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
Muutuja y ei tohi võrduda väärtusega 0.
xy\times 3x+5y\times 4-5x\times 2x=10xy
Muutuja y ei tohi võrduda väärtusega 0, kuna nulliga jagamist pole määratletud. Korrutage võrrandi mõlemad pooled arvuga 5xy, mis on arvu 5,x,y vähim ühiskordne.
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
Korrutage x ja x, et leida x^{2}.
x^{2}y\times 3+20y-5x\times 2x=10xy
Korrutage 5 ja 4, et leida 20.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
Korrutage x ja x, et leida x^{2}.
x^{2}y\times 3+20y-10x^{2}=10xy
Korrutage 5 ja 2, et leida 10.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Lahutage mõlemast poolest 10xy.
x^{2}y\times 3+20y-10xy=10x^{2}
Liitke 10x^{2} mõlemale poolele. Nulli liitmisel mis tahes väärtusele on tulemuseks sama väärtus.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
Kombineerige kõik liikmed, mis sisaldavad y.
\left(3x^{2}-10x+20\right)y=10x^{2}
Võrrand on standardkujul.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Jagage mõlemad pooled 3x^{2}-10x+20-ga.
y=\frac{10x^{2}}{3x^{2}-10x+20}
3x^{2}-10x+20-ga jagamine võtab 3x^{2}-10x+20-ga korrutamise tagasi.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
Muutuja y ei tohi võrduda väärtusega 0.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}