Resolver para z (solución compleja)
z=\left(|n+10^{n}|\right)^{\frac{Re(n)-iIm(n)-1}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}-2Re(n)+1}}e^{\frac{Im(n)arg(n+10^{n})+iRe(n)arg(n+10^{n})-iarg(n+10^{n})}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}-2Re(n)+1}-\frac{2iRe(n)\pi n_{1}}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}-2Re(n)+1}-\frac{2\pi n_{1}Im(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}-2Re(n)+1}+\frac{2i\pi n_{1}}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}-2Re(n)+1}}
n_{1}\in \mathrm{Z}
Resolver para z
\left\{\begin{matrix}z=\left(n+10^{n}\right)^{\frac{1}{n-1}}\text{, }&\left(Numerator(n-1)\text{bmod}2=1\text{ and }n\neq 1\text{ and }Denominator(n)\text{bmod}2=1\text{ and }n+10^{n}<0\text{ and }\left(n+10^{n}\right)^{\frac{1}{n-1}}\neq 0\right)\text{ or }\left(n\neq 1\text{ and }n+10^{n}>0\right)\text{ or }\left(\left(n+10^{n}\right)^{\frac{1}{n-1}}<0\text{ and }n+10^{n}=0\text{ and }n>1\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(\left(n+10^{n}\right)^{\frac{1}{n-1}}=0\text{ and }Numerator(n-1)\text{bmod}2=1\text{ and }Denominator(n)\text{bmod}2=1\text{ and }n+10^{n}<0\text{ and }n>1\right)\text{ or }\left(n+10^{n}=0\text{ and }n>1\text{ and }\left(n+10^{n}\right)^{\frac{1}{n-1}}>0\right)\text{ or }\left(\left(n+10^{n}\right)^{\frac{1}{n-1}}=0\text{ and }n>1\text{ and }n+10^{n}\geq 0\right)\\z=-\left(n+10^{n}\right)^{\frac{1}{n-1}}\text{, }&\left(n+10^{n}<0\text{ and }Numerator(n-1)\text{bmod}2=1\text{ and }n\neq 1\text{ and }Numerator(n-1)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\text{ and }\left(n+10^{n}\right)^{\frac{1}{n-1}}\neq 0\right)\text{ or }\left(n+10^{n}=0\text{ and }n>1\text{ and }\left(n+10^{n}\right)^{\frac{1}{n-1}}>0\text{ and }Numerator(n-1)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(n\neq 1\text{ and }n+10^{n}>0\text{ and }Numerator(n-1)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(n+10^{n}<0\text{ and }Numerator(n-1)\text{bmod}2=1\text{ and }\left(n+10^{n}\right)^{\frac{1}{n-1}}=0\text{ and }Numerator(n-1)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\text{ and }n>1\right)\text{ or }\left(n+10^{n}=0\text{ and }n>1\text{ and }\left(n+10^{n}\right)^{\frac{1}{n-1}}<0\text{ and }Numerator(n-1)\text{bmod}2=0\right)\text{ or }\left(n+10^{n}>0\text{ and }n\neq 1\text{ and }\left(n+10^{n}\right)^{\frac{1}{n-1}}<0\text{ and }Numerator(n-1)\text{bmod}2=0\right)\text{ or }\left(\left(n+10^{n}\right)^{\frac{1}{n-1}}=0\text{ and }Numerator(n-1)\text{bmod}2=0\text{ and }n>1\text{ and }n+10^{n}\geq 0\right)\end{matrix}\right,
Compartir
Copiado en el Portapapeles
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}