Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=2 ab=1\left(-15\right)=-15
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx-15. Para buscar a y b, configure un sistema que se va a resolver.
-1,15 -3,5
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. Mostrar todos los pares de números enteros que den como producto -15.
-1+15=14 -3+5=2
Calcule la suma de cada par.
a=-3 b=5
La solución es el par que proporciona suma 2.
\left(x^{2}-3x\right)+\left(5x-15\right)
Vuelva a escribir x^{2}+2x-15 como \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
Factoriza x en el primero y 5 en el segundo grupo.
\left(x-3\right)\left(x+5\right)
Simplifica el término común x-3 con la propiedad distributiva.
x^{2}+2x-15=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Obtiene el cuadrado de 2.
x=\frac{-2±\sqrt{4+60}}{2}
Multiplica -4 por -15.
x=\frac{-2±\sqrt{64}}{2}
Suma 4 y 60.
x=\frac{-2±8}{2}
Toma la raíz cuadrada de 64.
x=\frac{6}{2}
Ahora, resuelva la ecuación x=\frac{-2±8}{2} dónde ± es más. Suma -2 y 8.
x=3
Divide 6 por 2.
x=-\frac{10}{2}
Ahora, resuelva la ecuación x=\frac{-2±8}{2} dónde ± es menos. Resta 8 de -2.
x=-5
Divide -10 por 2.
x^{2}+2x-15=\left(x-3\right)\left(x-\left(-5\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 3 por x_{1} y -5 por x_{2}.
x^{2}+2x-15=\left(x-3\right)\left(x+5\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.