Saltar al contenido principal
Resolver para x (solución compleja)
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

6x^{2}=3-5
Resta 5 en los dos lados.
6x^{2}=-2
Resta 5 de 3 para obtener -2.
x^{2}=\frac{-2}{6}
Divide los dos lados por 6.
x^{2}=-\frac{1}{3}
Reduzca la fracción \frac{-2}{6} a su mínima expresión extrayendo y anulando 2.
x=\frac{\sqrt{3}i}{3} x=-\frac{\sqrt{3}i}{3}
La ecuación ahora está resuelta.
6x^{2}+5-3=0
Resta 3 en los dos lados.
6x^{2}+2=0
Resta 3 de 5 para obtener 2.
x=\frac{0±\sqrt{0^{2}-4\times 6\times 2}}{2\times 6}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 6 por a, 0 por b y 2 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\times 2}}{2\times 6}
Obtiene el cuadrado de 0.
x=\frac{0±\sqrt{-24\times 2}}{2\times 6}
Multiplica -4 por 6.
x=\frac{0±\sqrt{-48}}{2\times 6}
Multiplica -24 por 2.
x=\frac{0±4\sqrt{3}i}{2\times 6}
Toma la raíz cuadrada de -48.
x=\frac{0±4\sqrt{3}i}{12}
Multiplica 2 por 6.
x=\frac{\sqrt{3}i}{3}
Ahora, resuelva la ecuación x=\frac{0±4\sqrt{3}i}{12} dónde ± es más.
x=-\frac{\sqrt{3}i}{3}
Ahora, resuelva la ecuación x=\frac{0±4\sqrt{3}i}{12} dónde ± es menos.
x=\frac{\sqrt{3}i}{3} x=-\frac{\sqrt{3}i}{3}
La ecuación ahora está resuelta.