Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

x^{2}-x-30
Cambia el polinomio para ponerlo en una forma estándar. Ordena los términos de mayor a menor según la potencia.
a+b=-1 ab=1\left(-30\right)=-30
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx-30. Para buscar a y b, configure un sistema que se va a resolver.
1,-30 2,-15 3,-10 5,-6
Dado que ab es negativo, a y b tienen los signos opuestos. Dado que a+b es negativa, el número negativo tiene un valor absoluto mayor que el positivo. Mostrar todos los pares de números enteros que den como producto -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calcule la suma de cada par.
a=-6 b=5
La solución es el par que proporciona suma -1.
\left(x^{2}-6x\right)+\left(5x-30\right)
Vuelva a escribir x^{2}-x-30 como \left(x^{2}-6x\right)+\left(5x-30\right).
x\left(x-6\right)+5\left(x-6\right)
Factoriza x en el primero y 5 en el segundo grupo.
\left(x-6\right)\left(x+5\right)
Simplifica el término común x-6 con la propiedad distributiva.
x^{2}-x-30=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
Multiplica -4 por -30.
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
Suma 1 y 120.
x=\frac{-\left(-1\right)±11}{2}
Toma la raíz cuadrada de 121.
x=\frac{1±11}{2}
El opuesto de -1 es 1.
x=\frac{12}{2}
Ahora, resuelva la ecuación x=\frac{1±11}{2} dónde ± es más. Suma 1 y 11.
x=6
Divide 12 por 2.
x=-\frac{10}{2}
Ahora, resuelva la ecuación x=\frac{1±11}{2} dónde ± es menos. Resta 11 de 1.
x=-5
Divide -10 por 2.
x^{2}-x-30=\left(x-6\right)\left(x-\left(-5\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 6 por x_{1} y -5 por x_{2}.
x^{2}-x-30=\left(x-6\right)\left(x+5\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.