Saltar al contenido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}}
Usa las reglas de exponentes para simplificar la expresión.
x^{\frac{7}{5}\left(-\frac{5}{3}\right)}
Para elevar una potencia a otra potencia, multiplique los exponentes.
\frac{1}{x^{\frac{7}{3}}}
Multiplica \frac{7}{5} por -\frac{5}{3}. Para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador y, después, reduce la fracción a los términos mínimos (si es posible).
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{7}{5}})
Si F es la composición de dos funciones diferenciables, f\left(u\right) y u=g\left(x\right). Es decir, si F\left(x\right)=f\left(g\left(x\right)\right), entonces la derivada de F es la derivada de f en relación con u multiplicado por la derivada de g en relación con x, lo que es igual a \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}\times \frac{7}{5}x^{\frac{7}{5}-1}
La derivada de un polinomio es la suma de las derivadas de sus términos. La derivada de cualquier término constante es 0. La derivada de ax^{n} es nax^{n-1}.
-\frac{7}{3}x^{\frac{2}{5}}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}
Simplifica.