Saltar al contenido principal
Diferenciar w.r.t. a
Tick mark Image
Calcular
Tick mark Image

Problemas similares de búsqueda web

Compartir

\frac{2}{3}\left(a^{\frac{3}{2}}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{3}{2}})
Si F es la composición de dos funciones diferenciables, f\left(u\right) y u=g\left(x\right). Es decir, si F\left(x\right)=f\left(g\left(x\right)\right), entonces la derivada de F es la derivada de f en relación con u multiplicado por la derivada de g en relación con x, lo que es igual a \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{2}{3}\left(a^{\frac{3}{2}}\right)^{-\frac{1}{3}}\times \frac{3}{2}a^{\frac{3}{2}-1}
La derivada de un polinomio es la suma de las derivadas de sus términos. La derivada de cualquier término constante es 0. La derivada de ax^{n} es nax^{n-1}.
\sqrt{a}\left(a^{\frac{3}{2}}\right)^{-\frac{1}{3}}
Simplifica.