Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=-2 ab=1\left(-48\right)=-48
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx-48. Para buscar a y b, configure un sistema que se va a resolver.
1,-48 2,-24 3,-16 4,-12 6,-8
Dado que ab es negativo, a y b tienen los signos opuestos. Dado que a+b es negativa, el número negativo tiene un valor absoluto mayor que el positivo. Mostrar todos los pares de números enteros que den como producto -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Calcule la suma de cada par.
a=-8 b=6
La solución es el par que proporciona suma -2.
\left(x^{2}-8x\right)+\left(6x-48\right)
Vuelva a escribir x^{2}-2x-48 como \left(x^{2}-8x\right)+\left(6x-48\right).
x\left(x-8\right)+6\left(x-8\right)
Factoriza x en el primero y 6 en el segundo grupo.
\left(x-8\right)\left(x+6\right)
Simplifica el término común x-8 con la propiedad distributiva.
x^{2}-2x-48=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-48\right)}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-48\right)}}{2}
Obtiene el cuadrado de -2.
x=\frac{-\left(-2\right)±\sqrt{4+192}}{2}
Multiplica -4 por -48.
x=\frac{-\left(-2\right)±\sqrt{196}}{2}
Suma 4 y 192.
x=\frac{-\left(-2\right)±14}{2}
Toma la raíz cuadrada de 196.
x=\frac{2±14}{2}
El opuesto de -2 es 2.
x=\frac{16}{2}
Ahora, resuelva la ecuación x=\frac{2±14}{2} dónde ± es más. Suma 2 y 14.
x=8
Divide 16 por 2.
x=-\frac{12}{2}
Ahora, resuelva la ecuación x=\frac{2±14}{2} dónde ± es menos. Resta 14 de 2.
x=-6
Divide -12 por 2.
x^{2}-2x-48=\left(x-8\right)\left(x-\left(-6\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 8 por x_{1} y -6 por x_{2}.
x^{2}-2x-48=\left(x-8\right)\left(x+6\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.