Resolver para x
x<\frac{36}{5}
Gráfico
Compartir
Copiado en el Portapapeles
4x-45<27-3\times 2x
Multiplique ambos lados de la ecuación por 9, el mínimo común denominador de 9,3. Dado que 9 es positivo, la dirección de desigualdad sigue siendo la misma.
4x-45<27-6x
Multiplica -3 y 2 para obtener -6.
4x-45+6x<27
Agrega 6x a ambos lados.
10x-45<27
Combina 4x y 6x para obtener 10x.
10x<27+45
Agrega 45 a ambos lados.
10x<72
Suma 27 y 45 para obtener 72.
x<\frac{72}{10}
Divide los dos lados por 10. Dado que 10 es positivo, la dirección de desigualdad sigue siendo la misma.
x<\frac{36}{5}
Reduzca la fracción \frac{72}{10} a su mínima expresión extrayendo y anulando 2.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}