Calcular
\frac{s\left(4-3t-5s\right)}{25s^{2}-9t^{2}}
Factorizar
\frac{s\left(4-3t-5s\right)}{25s^{2}-9t^{2}}
Compartir
Copiado en el Portapapeles
\frac{4s}{\left(5s-3t\right)\left(5s+3t\right)}-\frac{s}{5s-3t}
Factorice 25s^{2}-9t^{2}.
\frac{4s}{\left(5s-3t\right)\left(5s+3t\right)}-\frac{s\left(5s+3t\right)}{\left(5s-3t\right)\left(5s+3t\right)}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. El mínimo común múltiplo de \left(5s-3t\right)\left(5s+3t\right) y 5s-3t es \left(5s-3t\right)\left(5s+3t\right). Multiplica \frac{s}{5s-3t} por \frac{5s+3t}{5s+3t}.
\frac{4s-s\left(5s+3t\right)}{\left(5s-3t\right)\left(5s+3t\right)}
Como \frac{4s}{\left(5s-3t\right)\left(5s+3t\right)} y \frac{s\left(5s+3t\right)}{\left(5s-3t\right)\left(5s+3t\right)} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{4s-5s^{2}-3st}{\left(5s-3t\right)\left(5s+3t\right)}
Haga las multiplicaciones en 4s-s\left(5s+3t\right).
\frac{4s-5s^{2}-3st}{25s^{2}-9t^{2}}
Expande \left(5s-3t\right)\left(5s+3t\right).
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}