Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Compartir

\frac{1}{2}x\left(2+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
Multiplique ambos lados de la ecuación por 2m\left(3m^{2}+4\right), el mínimo común denominador de 2,2\left(3m^{2}+4\right),m.
\frac{1}{2}x\left(\frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)}+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. Multiplica 2 por \frac{2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)}.
\frac{1}{2}x\times \frac{2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
Como \frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)} y \frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)} tienen el mismo denominador, sume sus numeradores para sumarlos.
\frac{1}{2}x\times \frac{12m^{2}+16+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
Haga las multiplicaciones en 2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4}.
\frac{1}{2}x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
Combine los términos semejantes en 12m^{2}+16+16+24m^{2}-9m^{4}.
x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)=m\left(3m^{2}+4\right)\sqrt{6}
Multiplica \frac{1}{2} y 2 para obtener 1.
\frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)=m\left(3m^{2}+4\right)\sqrt{6}
Expresa x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)} como una única fracción.
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}=m\left(3m^{2}+4\right)\sqrt{6}
Expresa \frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right) como una única fracción.
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}=\left(3m^{3}+4m\right)\sqrt{6}
Usa la propiedad distributiva para multiplicar m por 3m^{2}+4.
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}=3m^{3}\sqrt{6}+4m\sqrt{6}
Usa la propiedad distributiva para multiplicar 3m^{3}+4m por \sqrt{6}.
\frac{-2\times 9x\left(3m^{2}+4\right)\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)}{2\left(3m^{2}+4\right)}=3m^{3}\sqrt{6}+4m\sqrt{6}
Factorice las expresiones que aún no se hayan factorizado en \frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}.
-9x\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)=3m^{3}\sqrt{6}+4m\sqrt{6}
Anula 2\left(3m^{2}+4\right) tanto en el numerador como en el denominador.
-9xm^{4}+36xm^{2}+32x=3m^{3}\sqrt{6}+4m\sqrt{6}
Expande la expresión.
\left(-9m^{4}+36m^{2}+32\right)x=3m^{3}\sqrt{6}+4m\sqrt{6}
Combina todos los términos que contienen x.
\left(32+36m^{2}-9m^{4}\right)x=3\sqrt{6}m^{3}+4\sqrt{6}m
La ecuación está en formato estándar.
\frac{\left(32+36m^{2}-9m^{4}\right)x}{32+36m^{2}-9m^{4}}=\frac{\sqrt{6}m\left(3m^{2}+4\right)}{32+36m^{2}-9m^{4}}
Divide los dos lados por 36m^{2}+32-9m^{4}.
x=\frac{\sqrt{6}m\left(3m^{2}+4\right)}{32+36m^{2}-9m^{4}}
Al dividir por 36m^{2}+32-9m^{4}, se deshace la multiplicación por 36m^{2}+32-9m^{4}.