Solve for x
\left\{\begin{matrix}x=-\frac{2y-15}{3z}\text{, }&z\neq 0\\x\in \mathrm{R}\text{, }&y=\frac{15}{2}\text{ and }z=0\end{matrix}\right.
Solve for y
y=\frac{15-3xz}{2}
Share
Copied to clipboard
zx=5-\frac{2}{3}y
Subtract \frac{2}{3}y from both sides.
zx=-\frac{2y}{3}+5
The equation is in standard form.
\frac{zx}{z}=\frac{-\frac{2y}{3}+5}{z}
Divide both sides by z.
x=\frac{-\frac{2y}{3}+5}{z}
Dividing by z undoes the multiplication by z.
x=\frac{15-2y}{3z}
Divide 5-\frac{2y}{3} by z.
\frac{2}{3}y=5-zx
Subtract zx from both sides.
\frac{2}{3}y=5-xz
The equation is in standard form.
\frac{\frac{2}{3}y}{\frac{2}{3}}=\frac{5-xz}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{5-xz}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
y=\frac{15-3xz}{2}
Divide 5-zx by \frac{2}{3} by multiplying 5-zx by the reciprocal of \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}