Solve for x
\left\{\begin{matrix}x=\frac{z}{1-5y}\text{, }&y\neq \frac{1}{5}\\x\in \mathrm{R}\text{, }&z=0\text{ and }y=\frac{1}{5}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{z}{5x}+\frac{1}{5}\text{, }&x\neq 0\\y\in \mathrm{R}\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
x-5xy=z
Swap sides so that all variable terms are on the left hand side.
\left(1-5y\right)x=z
Combine all terms containing x.
\frac{\left(1-5y\right)x}{1-5y}=\frac{z}{1-5y}
Divide both sides by 1-5y.
x=\frac{z}{1-5y}
Dividing by 1-5y undoes the multiplication by 1-5y.
x-5xy=z
Swap sides so that all variable terms are on the left hand side.
-5xy=z-x
Subtract x from both sides.
\left(-5x\right)y=z-x
The equation is in standard form.
\frac{\left(-5x\right)y}{-5x}=\frac{z-x}{-5x}
Divide both sides by -5x.
y=\frac{z-x}{-5x}
Dividing by -5x undoes the multiplication by -5x.
y=-\frac{z}{5x}+\frac{1}{5}
Divide z-x by -5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}