Solve for y
\left\{\begin{matrix}y=-\frac{3x^{2}-z}{x\left(x^{2}-z\right)}\text{, }&x\neq 0\text{ and }z\neq x^{2}\\y\in \mathrm{R}\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
x^{3}y+3x^{2}-zyx=z
Swap sides so that all variable terms are on the left hand side.
x^{3}y-zyx=z-3x^{2}
Subtract 3x^{2} from both sides.
\left(x^{3}-zx\right)y=z-3x^{2}
Combine all terms containing y.
\left(x^{3}-xz\right)y=z-3x^{2}
The equation is in standard form.
\frac{\left(x^{3}-xz\right)y}{x^{3}-xz}=\frac{z-3x^{2}}{x^{3}-xz}
Divide both sides by x^{3}-zx.
y=\frac{z-3x^{2}}{x^{3}-xz}
Dividing by x^{3}-zx undoes the multiplication by x^{3}-zx.
y=\frac{z-3x^{2}}{x\left(x^{2}-z\right)}
Divide z-3x^{2} by x^{3}-zx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}