Solve for v
v=-\frac{9z}{2}+10
Solve for z
z=\frac{20-2v}{9}
Share
Copied to clipboard
z-2z-2v=3z-\left(20-5z\right)
Use the distributive property to multiply -2 by z+v.
-z-2v=3z-\left(20-5z\right)
Combine z and -2z to get -z.
-z-2v=3z-20+5z
To find the opposite of 20-5z, find the opposite of each term.
-z-2v=8z-20
Combine 3z and 5z to get 8z.
-2v=8z-20+z
Add z to both sides.
-2v=9z-20
Combine 8z and z to get 9z.
\frac{-2v}{-2}=\frac{9z-20}{-2}
Divide both sides by -2.
v=\frac{9z-20}{-2}
Dividing by -2 undoes the multiplication by -2.
v=-\frac{9z}{2}+10
Divide 9z-20 by -2.
z-2z-2v=3z-\left(20-5z\right)
Use the distributive property to multiply -2 by z+v.
-z-2v=3z-\left(20-5z\right)
Combine z and -2z to get -z.
-z-2v=3z-20+5z
To find the opposite of 20-5z, find the opposite of each term.
-z-2v=8z-20
Combine 3z and 5z to get 8z.
-z-2v-8z=-20
Subtract 8z from both sides.
-9z-2v=-20
Combine -z and -8z to get -9z.
-9z=-20+2v
Add 2v to both sides.
-9z=2v-20
The equation is in standard form.
\frac{-9z}{-9}=\frac{2v-20}{-9}
Divide both sides by -9.
z=\frac{2v-20}{-9}
Dividing by -9 undoes the multiplication by -9.
z=\frac{20-2v}{9}
Divide -20+2v by -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}