Evaluate
\frac{z^{33}}{396140812571321687967719751680}
Expand
\frac{z^{33}}{396140812571321687967719751680}
Share
Copied to clipboard
\frac{z^{33}}{4^{32}\times 2^{34}+\frac{\left(2^{25}\right)^{5}}{16\times 2^{25}}+\left(\frac{7^{5}}{7^{5}}-1\right)^{32}\times 4}
To multiply powers of the same base, add their exponents. Add 5 and 20 to get 25.
\frac{z^{33}}{4^{32}\times 2^{34}+\frac{2^{125}}{16\times 2^{25}}+\left(\frac{7^{5}}{7^{5}}-1\right)^{32}\times 4}
To raise a power to another power, multiply the exponents. Multiply 25 and 5 to get 125.
\frac{z^{33}}{4^{32}\times 2^{34}+\frac{2^{125}}{16\times 2^{25}}+\left(1-1\right)^{32}\times 4}
Divide 7^{5} by 7^{5} to get 1.
\frac{z^{33}}{18446744073709551616\times 2^{34}+\frac{2^{125}}{16\times 2^{25}}+\left(1-1\right)^{32}\times 4}
Calculate 4 to the power of 32 and get 18446744073709551616.
\frac{z^{33}}{18446744073709551616\times 17179869184+\frac{2^{125}}{16\times 2^{25}}+\left(1-1\right)^{32}\times 4}
Calculate 2 to the power of 34 and get 17179869184.
\frac{z^{33}}{316912650057057350374175801344+\frac{2^{125}}{16\times 2^{25}}+\left(1-1\right)^{32}\times 4}
Multiply 18446744073709551616 and 17179869184 to get 316912650057057350374175801344.
\frac{z^{33}}{316912650057057350374175801344+\frac{2^{100}}{16}+\left(1-1\right)^{32}\times 4}
Cancel out 2^{25} in both numerator and denominator.
\frac{z^{33}}{316912650057057350374175801344+\frac{1267650600228229401496703205376}{16}+\left(1-1\right)^{32}\times 4}
Calculate 2 to the power of 100 and get 1267650600228229401496703205376.
\frac{z^{33}}{316912650057057350374175801344+79228162514264337593543950336+\left(1-1\right)^{32}\times 4}
Divide 1267650600228229401496703205376 by 16 to get 79228162514264337593543950336.
\frac{z^{33}}{396140812571321687967719751680+\left(1-1\right)^{32}\times 4}
Add 316912650057057350374175801344 and 79228162514264337593543950336 to get 396140812571321687967719751680.
\frac{z^{33}}{396140812571321687967719751680+0^{32}\times 4}
Subtract 1 from 1 to get 0.
\frac{z^{33}}{396140812571321687967719751680+0\times 4}
Calculate 0 to the power of 32 and get 0.
\frac{z^{33}}{396140812571321687967719751680+0}
Multiply 0 and 4 to get 0.
\frac{z^{33}}{396140812571321687967719751680}
Add 396140812571321687967719751680 and 0 to get 396140812571321687967719751680.
\frac{z^{33}}{4^{32}\times 2^{34}+\frac{\left(2^{25}\right)^{5}}{16\times 2^{25}}+\left(\frac{7^{5}}{7^{5}}-1\right)^{32}\times 4}
To multiply powers of the same base, add their exponents. Add 5 and 20 to get 25.
\frac{z^{33}}{4^{32}\times 2^{34}+\frac{2^{125}}{16\times 2^{25}}+\left(\frac{7^{5}}{7^{5}}-1\right)^{32}\times 4}
To raise a power to another power, multiply the exponents. Multiply 25 and 5 to get 125.
\frac{z^{33}}{4^{32}\times 2^{34}+\frac{2^{125}}{16\times 2^{25}}+\left(1-1\right)^{32}\times 4}
Divide 7^{5} by 7^{5} to get 1.
\frac{z^{33}}{18446744073709551616\times 2^{34}+\frac{2^{125}}{16\times 2^{25}}+\left(1-1\right)^{32}\times 4}
Calculate 4 to the power of 32 and get 18446744073709551616.
\frac{z^{33}}{18446744073709551616\times 17179869184+\frac{2^{125}}{16\times 2^{25}}+\left(1-1\right)^{32}\times 4}
Calculate 2 to the power of 34 and get 17179869184.
\frac{z^{33}}{316912650057057350374175801344+\frac{2^{125}}{16\times 2^{25}}+\left(1-1\right)^{32}\times 4}
Multiply 18446744073709551616 and 17179869184 to get 316912650057057350374175801344.
\frac{z^{33}}{316912650057057350374175801344+\frac{2^{100}}{16}+\left(1-1\right)^{32}\times 4}
Cancel out 2^{25} in both numerator and denominator.
\frac{z^{33}}{316912650057057350374175801344+\frac{1267650600228229401496703205376}{16}+\left(1-1\right)^{32}\times 4}
Calculate 2 to the power of 100 and get 1267650600228229401496703205376.
\frac{z^{33}}{316912650057057350374175801344+79228162514264337593543950336+\left(1-1\right)^{32}\times 4}
Divide 1267650600228229401496703205376 by 16 to get 79228162514264337593543950336.
\frac{z^{33}}{396140812571321687967719751680+\left(1-1\right)^{32}\times 4}
Add 316912650057057350374175801344 and 79228162514264337593543950336 to get 396140812571321687967719751680.
\frac{z^{33}}{396140812571321687967719751680+0^{32}\times 4}
Subtract 1 from 1 to get 0.
\frac{z^{33}}{396140812571321687967719751680+0\times 4}
Calculate 0 to the power of 32 and get 0.
\frac{z^{33}}{396140812571321687967719751680+0}
Multiply 0 and 4 to get 0.
\frac{z^{33}}{396140812571321687967719751680}
Add 396140812571321687967719751680 and 0 to get 396140812571321687967719751680.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}