Solve for q
\left\{\begin{matrix}q=-z^{2}+\frac{x^{2}}{z}+z\text{, }&z\neq 0\\q\in \mathrm{R}\text{, }&x=0\text{ and }z=0\end{matrix}\right.
Solve for x
x=\sqrt{z\left(z^{2}-z+q\right)}
x=-\sqrt{z\left(z^{2}-z+q\right)}\text{, }z\geq \frac{\sqrt{1-4q}+1}{2}\text{ or }q>\frac{1}{4}\text{ or }\left(z=\frac{-\sqrt{1-4q}+1}{2}\text{ and }q<\frac{1}{4}\right)\text{ or }\left(z\geq \frac{-\sqrt{1-4q}+1}{2}\text{ and }q<\frac{1}{4}\text{ and }z\leq 0\right)\text{ or }\left(z\geq 0\text{ and }z\leq \frac{-\sqrt{1-4q}+1}{2}\right)\text{ or }z=0\text{ or }\left(z\geq 0\text{ and }q\geq \frac{1}{4}\right)
Share
Copied to clipboard
-z^{2}+zq=x^{2}-z^{3}
Subtract z^{3} from both sides.
zq=x^{2}-z^{3}+z^{2}
Add z^{2} to both sides.
\frac{zq}{z}=\frac{x^{2}-z^{3}+z^{2}}{z}
Divide both sides by z.
q=\frac{x^{2}-z^{3}+z^{2}}{z}
Dividing by z undoes the multiplication by z.
q=-z^{2}+\frac{x^{2}}{z}+z
Divide x^{2}-z^{3}+z^{2} by z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}