Solve for x
x=\frac{7-14yz^{3}}{3}
z\neq 0\text{ and }y\neq 0
Solve for y
y=-\frac{3x-7}{14z^{3}}
x\neq \frac{7}{3}\text{ and }z\neq 0
Share
Copied to clipboard
14yzz^{2}=-3x+7
Multiply both sides of the equation by 14yz.
14yz^{3}=-3x+7
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-3x+7=14yz^{3}
Swap sides so that all variable terms are on the left hand side.
-3x=14yz^{3}-7
Subtract 7 from both sides.
\frac{-3x}{-3}=\frac{14yz^{3}-7}{-3}
Divide both sides by -3.
x=\frac{14yz^{3}-7}{-3}
Dividing by -3 undoes the multiplication by -3.
x=\frac{7-14yz^{3}}{3}
Divide 14yz^{3}-7 by -3.
14yzz^{2}=-3x+7
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 14yz.
14yz^{3}=-3x+7
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
14z^{3}y=7-3x
The equation is in standard form.
\frac{14z^{3}y}{14z^{3}}=\frac{7-3x}{14z^{3}}
Divide both sides by 14z^{3}.
y=\frac{7-3x}{14z^{3}}
Dividing by 14z^{3} undoes the multiplication by 14z^{3}.
y=\frac{7-3x}{14z^{3}}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}