Solve for z_1
z_{1}=2z+\frac{7-4i}{z}
z\neq 0
Solve for z
z=\frac{\sqrt{z_{1}^{2}+\left(-56+32i\right)}+z_{1}}{4}
z=\frac{-\sqrt{z_{1}^{2}+\left(-56+32i\right)}+z_{1}}{4}
Share
Copied to clipboard
z^{2}+z^{2}-z_{1}z+7-4i=0
Use the distributive property to multiply z-z_{1} by z.
2z^{2}-z_{1}z+7-4i=0
Combine z^{2} and z^{2} to get 2z^{2}.
-z_{1}z+7-4i=-2z^{2}
Subtract 2z^{2} from both sides. Anything subtracted from zero gives its negation.
-z_{1}z-4i=-2z^{2}-7
Subtract 7 from both sides.
-z_{1}z=-2z^{2}-7+4i
Add 4i to both sides.
\left(-z\right)z_{1}=-7+4i-2z^{2}
The equation is in standard form.
\frac{\left(-z\right)z_{1}}{-z}=\frac{-7+4i-2z^{2}}{-z}
Divide both sides by -z.
z_{1}=\frac{-7+4i-2z^{2}}{-z}
Dividing by -z undoes the multiplication by -z.
z_{1}=2z+\frac{7-4i}{z}
Divide -2z^{2}+\left(-7+4i\right) by -z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}