Solve for z
z=\frac{-1+2\sqrt{6}i}{5}\approx -0.2+0.979795897i
z=\frac{-2\sqrt{6}i-1}{5}\approx -0.2-0.979795897i
Share
Copied to clipboard
z^{2}+\frac{2}{5}z+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\frac{2}{5}±\sqrt{\left(\frac{2}{5}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{2}{5} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\frac{2}{5}±\sqrt{\frac{4}{25}-4}}{2}
Square \frac{2}{5} by squaring both the numerator and the denominator of the fraction.
z=\frac{-\frac{2}{5}±\sqrt{-\frac{96}{25}}}{2}
Add \frac{4}{25} to -4.
z=\frac{-\frac{2}{5}±\frac{4\sqrt{6}i}{5}}{2}
Take the square root of -\frac{96}{25}.
z=\frac{-2+4\sqrt{6}i}{2\times 5}
Now solve the equation z=\frac{-\frac{2}{5}±\frac{4\sqrt{6}i}{5}}{2} when ± is plus. Add -\frac{2}{5} to \frac{4i\sqrt{6}}{5}.
z=\frac{-1+2\sqrt{6}i}{5}
Divide \frac{-2+4i\sqrt{6}}{5} by 2.
z=\frac{-4\sqrt{6}i-2}{2\times 5}
Now solve the equation z=\frac{-\frac{2}{5}±\frac{4\sqrt{6}i}{5}}{2} when ± is minus. Subtract \frac{4i\sqrt{6}}{5} from -\frac{2}{5}.
z=\frac{-2\sqrt{6}i-1}{5}
Divide \frac{-2-4i\sqrt{6}}{5} by 2.
z=\frac{-1+2\sqrt{6}i}{5} z=\frac{-2\sqrt{6}i-1}{5}
The equation is now solved.
z^{2}+\frac{2}{5}z+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
z^{2}+\frac{2}{5}z+1-1=-1
Subtract 1 from both sides of the equation.
z^{2}+\frac{2}{5}z=-1
Subtracting 1 from itself leaves 0.
z^{2}+\frac{2}{5}z+\left(\frac{1}{5}\right)^{2}=-1+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+\frac{2}{5}z+\frac{1}{25}=-1+\frac{1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
z^{2}+\frac{2}{5}z+\frac{1}{25}=-\frac{24}{25}
Add -1 to \frac{1}{25}.
\left(z+\frac{1}{5}\right)^{2}=-\frac{24}{25}
Factor z^{2}+\frac{2}{5}z+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{1}{5}\right)^{2}}=\sqrt{-\frac{24}{25}}
Take the square root of both sides of the equation.
z+\frac{1}{5}=\frac{2\sqrt{6}i}{5} z+\frac{1}{5}=-\frac{2\sqrt{6}i}{5}
Simplify.
z=\frac{-1+2\sqrt{6}i}{5} z=\frac{-2\sqrt{6}i-1}{5}
Subtract \frac{1}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}