Solve for m
\left\{\begin{matrix}m=-\frac{z}{pq-1}\text{, }&p=0\text{ or }q\neq \frac{1}{p}\\m\in \mathrm{R}\text{, }&z=0\text{ and }q=\frac{1}{p}\text{ and }p\neq 0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{m-z}{mq}\text{, }&m\neq 0\text{ and }q\neq 0\\p\in \mathrm{R}\text{, }&\left(z=m\text{ and }q=0\right)\text{ or }\left(z=0\text{ and }m=0\right)\end{matrix}\right.
Share
Copied to clipboard
m-qpm=z
Swap sides so that all variable terms are on the left hand side.
-mpq+m=z
Reorder the terms.
\left(-pq+1\right)m=z
Combine all terms containing m.
\left(1-pq\right)m=z
The equation is in standard form.
\frac{\left(1-pq\right)m}{1-pq}=\frac{z}{1-pq}
Divide both sides by -pq+1.
m=\frac{z}{1-pq}
Dividing by -pq+1 undoes the multiplication by -pq+1.
m-qpm=z
Swap sides so that all variable terms are on the left hand side.
-qpm=z-m
Subtract m from both sides.
\left(-mq\right)p=z-m
The equation is in standard form.
\frac{\left(-mq\right)p}{-mq}=\frac{z-m}{-mq}
Divide both sides by -qm.
p=\frac{z-m}{-mq}
Dividing by -qm undoes the multiplication by -qm.
p=-\frac{z-m}{mq}
Divide z-m by -qm.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}