Solve for z
z=\frac{2}{5}+\frac{1}{5}i=0.4+0.2i
Share
Copied to clipboard
z=3iz+3-5z
Use the distributive property to multiply 3i by z-i.
z=\left(-5+3i\right)z+3
Combine 3iz and -5z to get \left(-5+3i\right)z.
z-\left(-5+3i\right)z=3
Subtract \left(-5+3i\right)z from both sides.
\left(6-3i\right)z=3
Combine z and \left(5-3i\right)z to get \left(6-3i\right)z.
z=\frac{3}{6-3i}
Divide both sides by 6-3i.
z=\frac{3\left(6+3i\right)}{\left(6-3i\right)\left(6+3i\right)}
Multiply both numerator and denominator of \frac{3}{6-3i} by the complex conjugate of the denominator, 6+3i.
z=\frac{3\left(6+3i\right)}{6^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{3\left(6+3i\right)}{45}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{3\times 6+3\times \left(3i\right)}{45}
Multiply 3 times 6+3i.
z=\frac{18+9i}{45}
Do the multiplications in 3\times 6+3\times \left(3i\right).
z=\frac{2}{5}+\frac{1}{5}i
Divide 18+9i by 45 to get \frac{2}{5}+\frac{1}{5}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}