Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z=3iz+3-5z
Use the distributive property to multiply 3i by z-i.
z=\left(-5+3i\right)z+3
Combine 3iz and -5z to get \left(-5+3i\right)z.
z-\left(-5+3i\right)z=3
Subtract \left(-5+3i\right)z from both sides.
\left(6-3i\right)z=3
Combine z and \left(5-3i\right)z to get \left(6-3i\right)z.
z=\frac{3}{6-3i}
Divide both sides by 6-3i.
z=\frac{3\left(6+3i\right)}{\left(6-3i\right)\left(6+3i\right)}
Multiply both numerator and denominator of \frac{3}{6-3i} by the complex conjugate of the denominator, 6+3i.
z=\frac{3\left(6+3i\right)}{6^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{3\left(6+3i\right)}{45}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{3\times 6+3\times \left(3i\right)}{45}
Multiply 3 times 6+3i.
z=\frac{18+9i}{45}
Do the multiplications in 3\times 6+3\times \left(3i\right).
z=\frac{2}{5}+\frac{1}{5}i
Divide 18+9i by 45 to get \frac{2}{5}+\frac{1}{5}i.