Solve for z
z=\frac{4}{3}+\frac{2}{3}i\approx 1.333333333+0.666666667i
Assign z
z≔\frac{4}{3}+\frac{2}{3}i
Share
Copied to clipboard
z=1+\frac{i}{1+\frac{i}{1+\frac{i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}}}
Multiply both numerator and denominator of \frac{i}{1+i} by the complex conjugate of the denominator, 1-i.
z=1+\frac{i}{1+\frac{i}{1+\frac{i\left(1-i\right)}{1^{2}-i^{2}}}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=1+\frac{i}{1+\frac{i}{1+\frac{i\left(1-i\right)}{2}}}
By definition, i^{2} is -1. Calculate the denominator.
z=1+\frac{i}{1+\frac{i}{1+\frac{i-i^{2}}{2}}}
Multiply i times 1-i.
z=1+\frac{i}{1+\frac{i}{1+\frac{i-\left(-1\right)}{2}}}
By definition, i^{2} is -1.
z=1+\frac{i}{1+\frac{i}{1+\frac{1+i}{2}}}
Do the multiplications in i-\left(-1\right). Reorder the terms.
z=1+\frac{i}{1+\frac{i}{1+\left(\frac{1}{2}+\frac{1}{2}i\right)}}
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
z=1+\frac{i}{1+\frac{i}{1+\frac{1}{2}+\frac{1}{2}i}}
Combine the real and imaginary parts in numbers 1 and \frac{1}{2}+\frac{1}{2}i.
z=1+\frac{i}{1+\frac{i}{\frac{3}{2}+\frac{1}{2}i}}
Add 1 to \frac{1}{2}.
z=1+\frac{i}{1+\frac{i\left(\frac{3}{2}-\frac{1}{2}i\right)}{\left(\frac{3}{2}+\frac{1}{2}i\right)\left(\frac{3}{2}-\frac{1}{2}i\right)}}
Multiply both numerator and denominator of \frac{i}{\frac{3}{2}+\frac{1}{2}i} by the complex conjugate of the denominator, \frac{3}{2}-\frac{1}{2}i.
z=1+\frac{i}{1+\frac{i\left(\frac{3}{2}-\frac{1}{2}i\right)}{\left(\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}i^{2}}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=1+\frac{i}{1+\frac{i\left(\frac{3}{2}-\frac{1}{2}i\right)}{\frac{5}{2}}}
By definition, i^{2} is -1. Calculate the denominator.
z=1+\frac{i}{1+\frac{\frac{3}{2}i-\frac{1}{2}i^{2}}{\frac{5}{2}}}
Multiply i times \frac{3}{2}-\frac{1}{2}i.
z=1+\frac{i}{1+\frac{\frac{3}{2}i-\frac{1}{2}\left(-1\right)}{\frac{5}{2}}}
By definition, i^{2} is -1.
z=1+\frac{i}{1+\frac{\frac{1}{2}+\frac{3}{2}i}{\frac{5}{2}}}
Do the multiplications in \frac{3}{2}i-\frac{1}{2}\left(-1\right). Reorder the terms.
z=1+\frac{i}{1+\left(\frac{1}{5}+\frac{3}{5}i\right)}
Divide \frac{1}{2}+\frac{3}{2}i by \frac{5}{2} to get \frac{1}{5}+\frac{3}{5}i.
z=1+\frac{i}{1+\frac{1}{5}+\frac{3}{5}i}
Combine the real and imaginary parts in numbers 1 and \frac{1}{5}+\frac{3}{5}i.
z=1+\frac{i}{\frac{6}{5}+\frac{3}{5}i}
Add 1 to \frac{1}{5}.
z=1+\frac{i\left(\frac{6}{5}-\frac{3}{5}i\right)}{\left(\frac{6}{5}+\frac{3}{5}i\right)\left(\frac{6}{5}-\frac{3}{5}i\right)}
Multiply both numerator and denominator of \frac{i}{\frac{6}{5}+\frac{3}{5}i} by the complex conjugate of the denominator, \frac{6}{5}-\frac{3}{5}i.
z=1+\frac{i\left(\frac{6}{5}-\frac{3}{5}i\right)}{\left(\frac{6}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=1+\frac{i\left(\frac{6}{5}-\frac{3}{5}i\right)}{\frac{9}{5}}
By definition, i^{2} is -1. Calculate the denominator.
z=1+\frac{\frac{6}{5}i-\frac{3}{5}i^{2}}{\frac{9}{5}}
Multiply i times \frac{6}{5}-\frac{3}{5}i.
z=1+\frac{\frac{6}{5}i-\frac{3}{5}\left(-1\right)}{\frac{9}{5}}
By definition, i^{2} is -1.
z=1+\frac{\frac{3}{5}+\frac{6}{5}i}{\frac{9}{5}}
Do the multiplications in \frac{6}{5}i-\frac{3}{5}\left(-1\right). Reorder the terms.
z=1+\left(\frac{1}{3}+\frac{2}{3}i\right)
Divide \frac{3}{5}+\frac{6}{5}i by \frac{9}{5} to get \frac{1}{3}+\frac{2}{3}i.
z=1+\frac{1}{3}+\frac{2}{3}i
Combine the real and imaginary parts in numbers 1 and \frac{1}{3}+\frac{2}{3}i.
z=\frac{4}{3}+\frac{2}{3}i
Add 1 to \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}